当前位置: 首页 > article >正文

AP单类平均准确率

        P_true   N_true
P_pred    TP      Fp
N_pred    FN      TN
           P       N
  1. TP(真正样本,与真实框IoU大于阈值的框) FP(假正样本,与真实框IoU小于阈值的框) TN(真负样本,背景) FN(假负样本,没有检测出的正样本)
  2. IoU:(A and B)/(A or B) A与B的交集除以A与B的并集
  3. precision:准确率,查全率。TP/(TP+FP)= TP/num_pred,数值越大,说明FP数量越少,准确率越高,但是没有考虑FN(可能有漏检)。
  4. recall:召回率,查准率。TP/(TP+FN)= TP/num_sample,数值越大,说明被检测到的正样本越多,效果越好,但是没有考虑FP(如果把背景也判断成前景,则效果不好)。
  5. F score:几何平均分,(BB+1)PR/(BBP+R),B用来调节PR的权重,当B=1,F1 score。 是precision和recall的加权,考虑两个评价指标的优劣。precision和recall是此消彼长的关系。
  6. Average Precision:单类平均准确率。是PR曲线的面积。
样本     置信度       正负样本    累计tp   累计fp   precision   recall
1 		 0.97 		 True 		 1 		 0 		 1.0 		 0.1
2 		 0.87 		 True 		 2 		 0 		 1.0 		 0.2
3 		 0.84 		 True 		 3 		 0 		 1.0 		 0.3
4 		 0.8 		 True 		 4 		 0 		 1.0 		 0.4
5 		 0.69 		 False 		 4 		 1 		 0.8 		 0.4
6 		 0.58 		 True 		 5 		 1 		 0.83 		 0.5
7 		 0.43 		 False 		 5 		 2 		 0.71 		 0.5
8 		 0.19 		 True 		 6 		 2 		 0.75 		 0.6
9 		 0.02 		 False 		 6 		 3 		 0.67 		 0.6
10 		 0.03 		 False 		 6 		 4 		 0.6 		 0.6

在这里插入图片描述

import numpy as np
img_ids = None
class_recs = None
BB = None

nd = len(img_ids)
thred = 0.5
npos = 100
tp = np.zeros(nd)
fp = np.zeros(nd)
for d in range(nd):
  R = class_recs[img_ids[d]]
  bb = BB[d,:].astype(float)      # 按照置信度排好序
  idx = -np.inf
  BBGT = R['bbox'].astype(float)  # 真实框
  if BBGT.size>0:
      # 计算IoU
      x1y1 = np.maximum(BBGT[:,:2],bb[:2])
      x2y2 = np.maximum(BBGT[:, 2:], bb[2:])
      wh = np.maximum(x2y2-x1y1+1,0)
      inters = wh[0]*wh[1]
      bb_areas = (bb[2]-bb[0]+1.0)*(bb[3]-bb[1]+1.0)
      BBGT_ares = (BBGT[:,2]-BBGT[:,0]+1.0)*(BBGT[:,3]-BBGT[:,1]+1.0)
      ious = inters/(bb_areas+BBGT_ares-inters)
      iou = np.max(ious)
      idx = np.argmax(ious)

  if idx>thred:
      if not R['difficult'][idx]:
          if not R['det'][idx]:
              tp[d]=1.
              R['det'][idx]=1
          else:
              fp[d] = 1.
  else:
      fp[d] = 1.

fp = np.cumum(fp)
tp = np.cumum(tp)
rec = tp/float(npos)
prec = tp/np.maximum(tp+fp,np.finfo(np.float64).eps)

def voc_ap(rec,prec):
  mrec = np.concatenate(([0.],rec,[1.]))
  mpre = np.concatenate(([0.],prec,[0.]))

  for i in range(mpre.size-1,0,-1):
      mpre[i-1]=np.maximum(mpre[i-1],mpre[i])

  i = np.where(mpre[1:] != mpre[:-1])[0]
  ap = np.sum((mrec[i+1]-mrec[i])*mrec[i+1])
  return ap


http://www.kler.cn/a/531314.html

相关文章:

  • hypermesh中用tcl脚本生成多个线段
  • 前端力扣刷题 | 6:hot100之 矩阵
  • C++底层学习预备:模板初阶
  • 北京门头沟区房屋轮廓shp的arcgis数据建筑物轮廓无偏移坐标测评
  • Spring Boot - 数据库集成06 - 集成ElasticSearch
  • openRv1126 AI算法部署实战之——TensorFlow TFLite Pytorch ONNX等模型转换实战
  • MySQL 插入数据指南
  • 一文读懂 RAG:LLM 借助检索打开思路
  • 响应式编程与协程
  • Hot100之图论
  • 02 使用 海康SDK 对人脸识别设备读取事件
  • ubuntu18.04环境下,Zotero 中pdf translate划线后不翻译问题解决
  • DeepSeek辅助学术写作关键词选取
  • Kali linux 下载与快捷安装
  • 如何通过防关联技术有效避免账号被封?
  • 大数据治理体系构建与关键技术实践
  • 关于PIP更新技巧的DeepSeek R1的推理记录
  • Chromium132 编译指南 - Android 篇(四):配置 depot_tools
  • Pandoc, Zotero, JabRef 管理论文引用,生成参考文献 | 撰写论文 paper
  • 【C++】static关键字
  • WAWA鱼2024年终总结,关键词:成长
  • 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.15 结构化数组:处理异构数据的瑞士军刀
  • centos如何压缩zip
  • 【C++】P1765 手机
  • 大模型微调技术总结及使用GPU对VisualGLM-6B进行高效微调
  • 01-Java基础语法