机器学习数学基础:22.对称矩阵的对角化
一、核心概念详解
(一)内积
- 定义与公式:在 n n n维向量空间中,对于向量 x ⃗ = ( x 1 , x 2 , ⋯ , x n ) \vec{x}\ =(x_1,x_2,\cdots,x_n) x =(x1,x2,⋯,xn)和 y ⃗ = ( y 1 , y 2 , ⋯ , y n ) \vec{y}\ =(y_1,y_2,\cdots,y_n) y =(y1,y2,⋯,yn),内积记作 ( x ⃗ , y ⃗ ) (\vec{x},\vec{y}) (x,y),其计算公式为 ( x ⃗ , y ⃗ ) = x 1 y 1 + x 2 y 2 + ⋯ + x n y n (\vec{x},\vec{y}) \ = x_1y_1 + x_2y_2+\cdots + x_ny_n (x,y) =x1y1+x2y2+⋯+xnyn,从几何角度还可表示为 ∣ x ⃗ ∣ ∣ y ⃗ ∣ cos θ \vert\vec{x}\vert\vert\vec{y}\vert\cos\theta ∣x∣∣y∣cosθ( θ \theta θ为两向量夹角),并且在矩阵形式下,若将向量视为列矩阵, ( x ⃗ , y ⃗ ) = x ⃗ T y ⃗ (\vec{x},\vec{y})\ =\vec{x}^T\vec{y} (x,y) =xTy。例如,在三维向量空间中,向量 a ⃗ = ( 1 , 2 , 3 ) \vec{a}\ =(1,2,3) a =(1,2,3), b ⃗ = ( 4 , 5 , 6 ) \vec{b}\ =(4,5,6) b =(4,5,6),则 ( a ⃗ , b ⃗ ) = 1 × 4 + 2 × 5 + 3 × 6 = 4 + 10 + 18 = 32 (\vec{a},\vec{b})\ =1\times4 + 2\times5 + 3\times6\ =4 + 10 + 18 \ = 32 (a,b) =1×4+2×5+3×6 =4+10+18 =32。
- 性质
- 对称性: ( x ⃗ , y ⃗ ) = ( y ⃗ , x ⃗ ) (\vec{x},\vec{y})\ =(\vec{y},\vec{x}) (x,y) =(y,x)。
- 线性性质: ( k x ⃗ , y ⃗ ) = k ( x ⃗ , y ⃗ ) (k\vec{x},\vec{y})\ =k(\vec{x},\vec{y}) (kx,y) =k(x,y)( k k k为常数); ( x ⃗ + y ⃗ , z ⃗ ) = ( x ⃗ , z ⃗ ) + ( y ⃗ , z ⃗ ) (\vec{x}+\vec{y},\vec{z})\ =(\vec{x},\vec{z})+(\vec{y},\vec{z}) (x+y,z) =(x,z)+(y,z)。
- 非负性: ( x ⃗ , x ⃗ ) ≥ 0 (\vec{x},\vec{x})\geq0 (x,x)≥0,当且仅当 x ⃗ = 0 ⃗ \vec{x}\ =\vec{0} x =0时, ( x ⃗ , x ⃗ ) = 0 (\vec{x},\vec{x}) \ = 0 (x,x) =0。
(二)向量的长度(模长)
- 定义与公式:向量 x ⃗ \vec{x} x的长度记为 ∣ x ⃗ ∣ \vert\vec{x}\vert ∣x∣,由内积定义可得 ∣ x ⃗ ∣ = ( x ⃗ , x ⃗ ) = x 1 2 + x 2 2 + ⋯ + x n 2 \vert\vec{x}\vert\ =\sqrt{(\vec{x},\vec{x})}\ =\sqrt{x_1^2 + x_2^2+\cdots + x_n^2} ∣x∣ =(x,x) =x12+x22+⋯+xn2。例如,对于向量 m ⃗ = ( 3 , − 4 ) \vec{m}\ =(3, - 4) m =(3,−4), ∣ m ⃗ ∣ = 3 2 + ( − 4 ) 2 = 9 + 16 = 5 \vert\vec{m}\vert\ =\sqrt{3^2+( - 4)^2}\ =\sqrt{9 + 16}\ =5 ∣m∣ =32+(−4)2 =9+16 =5。
- 性质
- 非负性: ∣ x ⃗ ∣ ≥ 0 \vert\vec{x}\vert\geq0 ∣x∣≥0, ∣ x ⃗ ∣ = 0 ⇔ x ⃗ = 0 ⃗ \vert\vec{x}\vert \ = 0\Leftrightarrow\vec{x}\ =\vec{0} ∣x∣ =0⇔x =0。
- 齐次性: ∣ k x ⃗ ∣ = ∣ k ∣ ∣ x ⃗ ∣ \vert k\vec{x}\vert\ =\vert k\vert\vert\vec{x}\vert ∣kx∣ =∣k∣∣x∣( k k k为常数)。
- 三角不等式: ∣ x ⃗ + y ⃗ ∣ ≤ ∣ x ⃗ ∣ + ∣ y ⃗ ∣ \vert\vec{x}+\vec{y}\vert\leq\vert\vec{x}\vert+\vert\vec{y}\vert ∣x+y∣≤∣x∣+∣y∣。
(三)单位向量
- 定义:长度为 1 1 1的向量称为单位向量。若 x ⃗ \vec{x} x是非零向量,将其单位化得到单位向量 e ⃗ \vec{e} e的公式为 e ⃗ = x ⃗ ∣ x ⃗ ∣ \vec{e}\ =\frac{\vec{x}}{\vert\vec{x}\vert} e =∣x∣x。例如,向量 n ⃗ = ( 2 , 2 ) \vec{n}\ =(2,2) n =(2,2), ∣ n ⃗ ∣ = 2 2 + 2 2 = 2 2 \vert\vec{n}\vert\ =\sqrt{2^2 + 2^2}\ =2\sqrt{2} ∣n∣ =22+22 =22,单位化后 e ⃗ = ( 2 2 2 , 2 2 2 ) = ( 2 2 , 2 2 ) \vec{e}\ =(\frac{2}{2\sqrt{2}},\frac{2}{2\sqrt{2}})\ =(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}) e =(222,222) =(22,22)。
- 用途:单位向量在构建正交矩阵以及描述向量方向等方面具有重要作用。
(四)向量的正交性
- 定义:若两向量 x ⃗ \vec{x} x和 y ⃗ \vec{y} y的内积 ( x ⃗ , y ⃗ ) = 0 (\vec{x},\vec{y}) \ = 0 (x,y) =0,则称 x ⃗ \vec{x} x与 y ⃗ \vec{y} y正交。例如,向量 p ⃗ = ( 1 , 1 ) \vec{p}\ =(1,1) p =(1,1), q ⃗ = ( 1 , − 1 ) \vec{q}\ =(1, - 1) q =(1,−1), ( p ⃗ , q ⃗ ) = 1 × 1 + 1 × ( − 1 ) = 0 (\vec{p},\vec{q})\ =1\times1 + 1\times( - 1)\ =0 (p,q) =1×1+1×(−1) =0,所以 p ⃗ \vec{p} p与 q ⃗ \vec{q} q正交。
- 性质:若一组非零向量两两正交,则称该向量组为正交向量组,正交向量组必定线性无关。
(五)施密特正交化方法
设
α
1
,
α
2
,
⋯
,
α
n
\alpha_1,\alpha_2,\cdots,\alpha_n
α1,α2,⋯,αn是一组线性无关向量组,将其正交化得到
β
1
,
β
2
,
⋯
,
β
n
\beta_1,\beta_2,\cdots,\beta_n
β1,β2,⋯,βn的步骤如下:
1.
β
1
=
α
1
\beta_1\ =\alpha_1
β1 =α1。
2.
β
2
=
α
2
−
(
α
2
,
β
1
)
(
β
1
,
β
1
)
β
1
\beta_2\ =\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1
β2 =α2−(β1,β1)(α2,β1)β1。
3.
β
3
=
α
3
−
(
α
3
,
β
1
)
(
β
1
,
β
1
)
β
1
−
(
α
3
,
β
2
)
(
β
2
,
β
2
)
β
2
\beta_3\ =\alpha_3-\frac{(\alpha_3,\beta_1)}{(\beta_1,\beta_1)}\beta_1-\frac{(\alpha_3,\beta_2)}{(\beta_2,\beta_2)}\beta_2
β3 =α3−(β1,β1)(α3,β1)β1−(β2,β2)(α3,β2)β2。
4. 一般地,
β
k
=
α
k
−
∑
i
=
1
k
−
1
(
α
k
,
β
i
)
(
β
i
,
β
i
)
β
i
\beta_k\ =\alpha_k-\sum_{i \ = 1}^{k - 1}\frac{(\alpha_k,\beta_i)}{(\beta_i,\beta_i)}\beta_i
βk =αk−∑i =1k−1(βi,βi)(αk,βi)βi(
k
=
2
,
3
,
⋯
,
n
k \ = 2,3,\cdots,n
k =2,3,⋯,n)。
例如,已知线性无关向量组
α
1
=
(
1
,
1
,
0
)
\alpha_1\ =(1,1,0)
α1 =(1,1,0),
α
2
=
(
1
,
0
,
1
)
\alpha_2\ =(1,0,1)
α2 =(1,0,1),
α
3
=
(
0
,
1
,
1
)
\alpha_3\ =(0,1,1)
α3 =(0,1,1):
-
β
1
=
α
1
=
(
1
,
1
,
0
)
\beta_1\ =\alpha_1\ =(1,1,0)
β1 =α1 =(1,1,0)。
-
β
2
=
α
2
−
(
α
2
,
β
1
)
(
β
1
,
β
1
)
β
1
=
(
1
,
0
,
1
)
−
1
×
1
+
0
×
1
+
1
×
0
1
2
+
1
2
+
0
2
(
1
,
1
,
0
)
=
(
1
2
,
−
1
2
,
1
)
\beta_2\ =\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1\ =(1,0,1)-\frac{1\times1 + 0\times1+1\times0}{1^2 + 1^2+0^2}(1,1,0)\ =(\frac{1}{2},-\frac{1}{2},1)
β2 =α2−(β1,β1)(α2,β1)β1 =(1,0,1)−12+12+021×1+0×1+1×0(1,1,0) =(21,−21,1)。
-
β
3
=
α
3
−
(
α
3
,
β
1
)
(
β
1
,
β
1
)
β
1
−
(
α
3
,
β
2
)
(
β
2
,
β
2
)
β
2
=
(
0
,
1
,
1
)
−
0
×
1
+
1
×
1
+
1
×
0
2
(
1
,
1
,
0
)
−
0
×
1
2
+
1
×
(
−
1
2
)
+
1
×
1
1
4
+
1
4
+
1
(
1
2
,
−
1
2
,
1
)
=
(
−
1
3
,
1
3
,
1
3
)
\beta_3\ =\alpha_3-\frac{(\alpha_3,\beta_1)}{(\beta_1,\beta_1)}\beta_1-\frac{(\alpha_3,\beta_2)}{(\beta_2,\beta_2)}\beta_2\ =(0,1,1)-\frac{0\times1 + 1\times1+1\times0}{2}(1,1,0)-\frac{0\times\frac{1}{2}+1\times(-\frac{1}{2}) + 1\times1}{\frac{1}{4}+\frac{1}{4}+1}(\frac{1}{2},-\frac{1}{2},1)\ =(-\frac{1}{3},\frac{1}{3},\frac{1}{3})
β3 =α3−(β1,β1)(α3,β1)β1−(β2,β2)(α3,β2)β2 =(0,1,1)−20×1+1×1+1×0(1,1,0)−41+41+10×21+1×(−21)+1×1(21,−21,1) =(−31,31,31)。
二、对称矩阵正交相似对角化步骤与原理
(一)对称矩阵的性质
以下通过具体的实对称矩阵例子,对图片中的三条性质分别进行说明:
性质1:实对称矩阵 A A A的特征值都是实数
设实对称矩阵
A
=
(
2
1
1
2
)
A \ = \begin{pmatrix}2&1\\1&2\end{pmatrix}
A =(2112),计算其特征值:
特征多项式为
∣
λ
E
−
A
∣
=
∣
λ
−
2
−
1
−
1
λ
−
2
∣
=
(
λ
−
2
)
2
−
1
=
λ
2
−
4
λ
+
4
−
1
=
λ
2
−
4
λ
+
3
\vert\lambda E - A\vert\ =\begin{vmatrix}\lambda - 2& - 1\\ - 1&\lambda - 2\end{vmatrix}\ = (\lambda - 2)^2 - 1 \ = \lambda^2 - 4\lambda + 4 - 1 \ = \lambda^2 - 4\lambda + 3
∣λE−A∣ =
λ−2−1−1λ−2
=(λ−2)2−1 =λ2−4λ+4−1 =λ2−4λ+3。
令
∣
λ
E
−
A
∣
=
0
\vert\lambda E - A\vert \ = 0
∣λE−A∣ =0,即
λ
2
−
4
λ
+
3
=
0
\lambda^2 - 4\lambda + 3 \ = 0
λ2−4λ+3 =0,因式分解得
(
λ
−
1
)
(
λ
−
3
)
=
0
(\lambda - 1)(\lambda - 3)\ =0
(λ−1)(λ−3) =0,解得特征值
λ
1
=
1
\lambda_1 \ = 1
λ1 =1,
λ
2
=
3
\lambda_2 \ = 3
λ2 =3,均为实数。
性质2:实对称矩阵 A A A的不同特征值对应的特征向量必定正交
对于上述矩阵 A = ( 2 1 1 2 ) A \ = \begin{pmatrix}2&1\\1&2\end{pmatrix} A =(2112):
- 当 λ 1 = 1 \lambda_1 \ = 1 λ1 =1时,求解齐次线性方程组 ( λ 1 E − A ) X = 0 (\lambda_1 E - A)X \ = 0 (λ1E−A)X =0,即 ( − 1 − 1 − 1 − 1 ) ( x 1 x 2 ) = ( 0 0 ) \begin{pmatrix}-1& - 1\\ - 1& - 1\end{pmatrix}\begin{pmatrix}x_1\\x_2\end{pmatrix}\ =\begin{pmatrix}0\\0\end{pmatrix} (−1−1−1−1)(x1x2) =(00),通过初等行变换可得 x 1 + x 2 = 0 x_1 + x_2 \ = 0 x1+x2 =0,取 x 1 = 1 x_1 \ = 1 x1 =1,则 x 2 = − 1 x_2 \ = - 1 x2 =−1,得到特征向量 ξ 1 = ( 1 − 1 ) \xi_1 \ = \begin{pmatrix}1\\ - 1\end{pmatrix} ξ1 =(1−1)。
- 当 λ 2 = 3 \lambda_2 \ = 3 λ2 =3时,求解齐次线性方程组 ( λ 2 E − A ) X = 0 (\lambda_2 E - A)X \ = 0 (λ2E−A)X =0,即 ( 1 − 1 − 1 1 ) ( x 1 x 2 ) = ( 0 0 ) \begin{pmatrix}1& - 1\\ - 1&1\end{pmatrix}\begin{pmatrix}x_1\\x_2\end{pmatrix}\ =\begin{pmatrix}0\\0\end{pmatrix} (1−1−11)(x1x2) =(00),通过初等行变换可得 x 1 − x 2 = 0 x_1 - x_2 \ = 0 x1−x2 =0,取 x 1 = 1 x_1 \ = 1 x1 =1,则 x 2 = 1 x_2 \ = 1 x2 =1,得到特征向量 ξ 2 = ( 1 1 ) \xi_2 \ = \begin{pmatrix}1\\1\end{pmatrix} ξ2 =(11)。
计算两个特征向量的内积 ( ξ 1 , ξ 2 ) = 1 × 1 + ( − 1 ) × 1 = 0 (\xi_1,\xi_2)\ =1\times1 + (-1)\times1 \ = 0 (ξ1,ξ2) =1×1+(−1)×1 =0,所以 ξ 1 \xi_1 ξ1与 ξ 2 \xi_2 ξ2正交,体现了不同特征值对应的特征向量必定正交这一性质。
性质3:对于 n n n阶实对称矩阵 A A A,必存在 n n n个线性无关的特征向量,即 A A A一定可以相似对角化。并且可以通过正交化和单位化特征向量,得到一个正交矩阵 Q Q Q,使得 Q − 1 A Q = Q T A Q = Λ Q^{-1}AQ \ = Q^TAQ \ = \Lambda Q−1AQ =QTAQ =Λ( Λ \Lambda Λ为对角矩阵,其对角线上元素为 A A A的特征值)
还是矩阵 A = ( 2 1 1 2 ) A \ = \begin{pmatrix}2&1\\1&2\end{pmatrix} A =(2112),它是 2 2 2阶实对称矩阵:
- 已求得特征值 λ 1 = 1 \lambda_1 \ = 1 λ1 =1, λ 2 = 3 \lambda_2 \ = 3 λ2 =3,对应的特征向量分别为 ξ 1 = ( 1 − 1 ) \xi_1 \ = \begin{pmatrix}1\\ - 1\end{pmatrix} ξ1 =(1−1), ξ 2 = ( 1 1 ) \xi_2 \ = \begin{pmatrix}1\\1\end{pmatrix} ξ2 =(11),这两个特征向量线性无关(因为不存在不全为 0 0 0的数 k 1 , k 2 k_1,k_2 k1,k2使得 k 1 ξ 1 + k 2 ξ 2 = 0 k_1\xi_1 + k_2\xi_2 \ = 0 k1ξ1+k2ξ2 =0),所以 A A A可以相似对角化。
- 对特征向量进行单位化:
∣ ξ 1 ∣ = 1 2 + ( − 1 ) 2 = 2 \vert\xi_1\vert\ =\sqrt{1^2 + (-1)^2}\ =\sqrt{2} ∣ξ1∣ =12+(−1)2 =2,单位化后 γ 1 = 1 2 ( 1 − 1 ) = ( 1 2 − 1 2 ) \gamma_1 \ = \frac{1}{\sqrt{2}}\begin{pmatrix}1\\ - 1\end{pmatrix}\ =\begin{pmatrix}\frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}}\end{pmatrix} γ1 =21(1−1) =(21−21)
∣ ξ 2 ∣ = 1 2 + 1 2 = 2 \vert\xi_2\vert\ =\sqrt{1^2 + 1^2}\ =\sqrt{2} ∣ξ2∣ =12+12 =2,单位化后 γ 2 = 1 2 ( 1 1 ) = ( 1 2 1 2 ) \gamma_2 \ = \frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}\ =\begin{pmatrix}\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\end{pmatrix} γ2 =21(11) =(2121)
令正交矩阵
Q
=
(
1
2
1
2
−
1
2
1
2
)
Q \ = \begin{pmatrix}\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{pmatrix}
Q =(21−212121),计算
Q
T
A
Q
Q^TAQ
QTAQ:
Q
T
A
Q
=
(
1
2
−
1
2
1
2
1
2
)
(
2
1
1
2
)
(
1
2
1
2
−
1
2
1
2
)
=
(
1
2
−
1
2
1
2
1
2
)
(
2
−
1
2
2
+
1
2
1
−
2
2
1
+
2
2
)
=
(
1
2
−
1
2
1
2
1
2
)
(
1
2
3
2
−
1
2
3
2
)
=
(
1
0
0
3
)
\begin{align*} Q^TAQ&\ =\begin{pmatrix}\frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{pmatrix}\begin{pmatrix}2&1\\1&2\end{pmatrix}\begin{pmatrix}\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{pmatrix}\\ &\ =\begin{pmatrix}\frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{pmatrix}\begin{pmatrix}\frac{2 - 1}{\sqrt{2}}&\frac{2 + 1}{\sqrt{2}}\\\frac{1 - 2}{\sqrt{2}}&\frac{1 + 2}{\sqrt{2}}\end{pmatrix}\\ &\ =\begin{pmatrix}\frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{pmatrix}\begin{pmatrix}\frac{1}{\sqrt{2}}&\frac{3}{\sqrt{2}}\\-\frac{1}{\sqrt{2}}&\frac{3}{\sqrt{2}}\end{pmatrix}\\ &\ =\begin{pmatrix}1&0\\0&3\end{pmatrix} \end{align*}
QTAQ =(2121−2121)(2112)(21−212121) =(2121−2121)(22−121−222+121+2) =(2121−2121)(21−212323) =(1003)
得到的对角矩阵
Λ
=
(
1
0
0
3
)
\Lambda\ =\begin{pmatrix}1&0\\0&3\end{pmatrix}
Λ =(1003),对角线上元素为
A
A
A的特征值,验证了性质3。
(二)正交相似对角化步骤
- 求特征值:计算特征多项式 ∣ λ E − A ∣ \vert\lambda E - A\vert ∣λE−A∣,令 ∣ λ E − A ∣ = 0 \vert\lambda E - A\vert \ = 0 ∣λE−A∣ =0,解出特征值 λ 1 , λ 2 , ⋯ , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,⋯,λn(可能有重根)。
- 求特征向量:对于每个特征值 λ i \lambda_i λi,求解齐次线性方程组 ( λ i E − A ) X = 0 (\lambda_i E - A)X \ = 0 (λiE−A)X =0,得到基础解系,即 λ i \lambda_i λi对应的线性无关的特征向量 ξ i 1 , ξ i 2 , ⋯ , ξ i s \xi_{i1},\xi_{i2},\cdots,\xi_{is} ξi1,ξi2,⋯,ξis( s s s为 λ i \lambda_i λi的几何重数)。
- 特征向量的正交化与单位化
- 若特征值 λ i \lambda_i λi为单根,其对应的特征向量 ξ i \xi_i ξi只需单位化,即 γ i = ξ i ∣ ξ i ∣ \gamma_i\ =\frac{\xi_i}{\vert\xi_i\vert} γi =∣ξi∣ξi。
- 若特征值 λ j \lambda_j λj为重根,设其重数为 r r r,对应的 r r r个线性无关特征向量 ξ j 1 , ξ j 2 , ⋯ , ξ j r \xi_{j1},\xi_{j2},\cdots,\xi_{jr} ξj1,ξj2,⋯,ξjr需先用施密特正交化方法正交化,再单位化。
- 构造正交矩阵 Q Q Q:将所有单位化后的特征向量按列排列,构成正交矩阵 Q = ( γ 1 , γ 2 , ⋯ , γ n ) Q \ = (\gamma_1,\gamma_2,\cdots,\gamma_n) Q =(γ1,γ2,⋯,γn),则有 Q T A Q = Λ Q^TAQ\ =\Lambda QTAQ =Λ,其中 Λ \Lambda Λ是对角矩阵,对角线上元素为对应的特征值。
三、例题解析
(一)例 1
设 A = ( 2 − 2 0 − 2 1 − 2 0 − 2 0 ) A\ =\begin{pmatrix}2&-2&0\\-2&1&-2\\0&-2&0\end{pmatrix} A = 2−20−21−20−20 ,求正交矩阵 Q Q Q,使得 Q T A Q Q^TAQ QTAQ为对角矩阵。
- 求特征值
∣ λ E − A ∣ = ∣ λ − 2 2 0 2 λ − 1 2 0 2 λ ∣ = ( λ − 2 ) [ ( λ − 1 ) λ − 4 ] − 2 ( 2 λ − 0 ) + 0 = ( λ − 2 ) ( λ 2 − λ − 4 ) − 4 λ = λ 3 − λ 2 − 4 λ − 2 λ 2 + 2 λ + 8 − 4 λ = λ 3 − 3 λ 2 − 6 λ + 8 = ( λ − 4 ) ( λ − 1 ) ( λ + 2 ) \begin{align*} \vert\lambda E - A\vert&\ =\begin{vmatrix}\lambda - 2&2&0\\2&\lambda - 1&2\\0&2&\lambda\end{vmatrix}\\ &\ = (\lambda - 2)[(\lambda - 1)\lambda - 4]-2(2\lambda - 0)+0\\ &\ = (\lambda - 2)(\lambda^2-\lambda - 4)-4\lambda\\ &\ =\lambda^3-\lambda^2 - 4\lambda - 2\lambda^2 + 2\lambda + 8 - 4\lambda\\ &\ =\lambda^3 - 3\lambda^2 - 6\lambda + 8\\ &\ = (\lambda - 4)(\lambda - 1)(\lambda + 2) \end{align*} ∣λE−A∣ = λ−2202λ−1202λ =(λ−2)[(λ−1)λ−4]−2(2λ−0)+0 =(λ−2)(λ2−λ−4)−4λ =λ3−λ2−4λ−2λ2+2λ+8−4λ =λ3−3λ2−6λ+8 =(λ−4)(λ−1)(λ+2)
令 ∣ λ E − A ∣ = 0 \vert\lambda E - A\vert \ = 0 ∣λE−A∣ =0,解得特征值 λ 1 = 4 \lambda_1 \ = 4 λ1 =4, λ 2 = 1 \lambda_2 \ = 1 λ2 =1, λ 3 = − 2 \lambda_3\ =-2 λ3 =−2。 - 求特征向量
- 当 λ 1 = 4 \lambda_1 \ = 4 λ1 =4时,解方程组 ( 4 E − A ) X = 0 (4E - A)X \ = 0 (4E−A)X =0, 4 E − A = ( 2 2 0 2 3 2 0 2 4 ) 4E - A\ =\begin{pmatrix}2&2&0\\2&3&2\\0&2&4\end{pmatrix} 4E−A = 220232024 ,通过初等行变换化为行最简形 ( 1 0 − 2 0 1 2 0 0 0 ) \begin{pmatrix}1&0&-2\\0&1&2\\0&0&0\end{pmatrix} 100010−220 ,得到基础解系 ξ 1 = ( 2 , − 2 , 1 ) \xi_1\ =(2, - 2,1) ξ1 =(2,−2,1)。
- 当 λ 2 = 1 \lambda_2 \ = 1 λ2 =1时,解方程组 ( E − A ) X = 0 (E - A)X \ = 0 (E−A)X =0, E − A = ( − 1 2 0 2 0 2 0 2 1 ) E - A\ =\begin{pmatrix}-1&2&0\\2&0&2\\0&2&1\end{pmatrix} E−A = −120202021 ,化为行最简形 ( 1 0 1 0 1 1 2 0 0 0 ) \begin{pmatrix}1&0&1\\0&1&\frac{1}{2}\\0&0&0\end{pmatrix} 1000101210 ,得到基础解系 ξ 2 = ( − 2 , − 1 , 2 ) \xi_2\ =(-2, - 1,2) ξ2 =(−2,−1,2)。
- 当 λ 3 = − 2 \lambda_3\ =-2 λ3 =−2时,解方程组 ( − 2 E − A ) X = 0 ( - 2E - A)X \ = 0 (−2E−A)X =0, − 2 E − A = ( − 4 2 0 2 − 3 2 0 2 − 2 ) -2E - A\ =\begin{pmatrix}-4&2&0\\2&-3&2\\0&2&-2\end{pmatrix} −2E−A = −4202−3202−2 ,化为行最简形 ( 1 0 1 2 0 1 1 0 0 0 ) \begin{pmatrix}1&0&\frac{1}{2}\\0&1&1\\0&0&0\end{pmatrix} 1000102110 ,得到基础解系 ξ 3 = ( 1 , 2 , 2 ) \xi_3\ =(1,2,2) ξ3 =(1,2,2)。
- 特征向量的单位化
- ∣ ξ 1 ∣ = 2 2 + ( − 2 ) 2 + 1 2 = 3 \vert\xi_1\vert\ =\sqrt{2^2+( - 2)^2+1^2}\ =3 ∣ξ1∣ =22+(−2)2+12 =3, γ 1 = ξ 1 ∣ ξ 1 ∣ = ( 2 3 , − 2 3 , 1 3 ) \gamma_1\ =\frac{\xi_1}{\vert\xi_1\vert}\ =(\frac{2}{3},-\frac{2}{3},\frac{1}{3}) γ1 =∣ξ1∣ξ1 =(32,−32,31)。
- ∣ ξ 2 ∣ = ( − 2 ) 2 + ( − 1 ) 2 + 2 2 = 3 \vert\xi_2\vert\ =\sqrt{(-2)^2+( - 1)^2+2^2}\ =3 ∣ξ2∣ =(−2)2+(−1)2+22 =3, γ 2 = ξ 2 ∣ ξ 2 ∣ = ( − 2 3 , − 1 3 , 2 3 ) \gamma_2\ =\frac{\xi_2}{\vert\xi_2\vert}\ =(-\frac{2}{3},-\frac{1}{3},\frac{2}{3}) γ2 =∣ξ2∣ξ2 =(−32,−31,32)。
- ∣ ξ 3 ∣ = 1 2 + 2 2 + 2 2 = 3 \vert\xi_3\vert\ =\sqrt{1^2 + 2^2+2^2}\ =3 ∣ξ3∣ =12+22+22 =3, γ 3 = ξ 3 ∣ ξ 3 ∣ = ( 1 3 , 2 3 , 2 3 ) \gamma_3\ =\frac{\xi_3}{\vert\xi_3\vert}\ =(\frac{1}{3},\frac{2}{3},\frac{2}{3}) γ3 =∣ξ3∣ξ3 =(31,32,32)。 - 构造正交矩阵
Q
Q
Q
令 Q = ( γ 1 , γ 2 , γ 3 ) = ( 2 3 − 2 3 1 3 − 2 3 − 1 3 2 3 1 3 2 3 2 3 ) Q \ = (\gamma_1,\gamma_2,\gamma_3)\ =\begin{pmatrix}\frac{2}{3}&-\frac{2}{3}&\frac{1}{3}\\-\frac{2}{3}&-\frac{1}{3}&\frac{2}{3}\\\frac{1}{3}&\frac{2}{3}&\frac{2}{3}\end{pmatrix} Q =(γ1,γ2,γ3) = 32−3231−32−3132313232 ,则 Q T A Q = ( 4 0 0 0 1 0 0 0 − 2 ) Q^TAQ\ =\begin{pmatrix}4&0&0\\0&1&0\\0&0&-2\end{pmatrix} QTAQ = 40001000−2 。
(二)例 2
设 A = ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) A\ =\begin{pmatrix}1&1&1&1\\1&1&1&1\\1&1&1&1\\1&1&1&1\end{pmatrix} A = 1111111111111111 ,求正交矩阵 Q Q Q使 Q T A Q Q^TAQ QTAQ为对角矩阵。
- 求特征值
∣ λ E − A ∣ = ∣ λ − 1 − 1 − 1 − 1 − 1 λ − 1 − 1 − 1 − 1 − 1 λ − 1 − 1 − 1 − 1 − 1 λ − 1 ∣ = ( λ − 4 ) ∣ 1 − 1 − 1 − 1 1 λ − 1 − 1 − 1 1 − 1 λ − 1 − 1 1 − 1 − 1 λ − 1 ∣ = ( λ − 4 ) ∣ 1 − 1 − 1 − 1 0 λ 0 0 0 0 λ 0 0 0 0 λ ∣ = λ 3 ( λ − 4 ) \begin{align*} \vert\lambda E - A\vert&\ =\begin{vmatrix}\lambda - 1&-1&-1&-1\\-1&\lambda - 1&-1&-1\\-1&-1&\lambda - 1&-1\\-1&-1&-1&\lambda - 1\end{vmatrix}\\ &\ = (\lambda - 4)\begin{vmatrix}1&-1&-1&-1\\1&\lambda - 1&-1&-1\\1&-1&\lambda - 1&-1\\1&-1&-1&\lambda - 1\end{vmatrix}\\ &\ = (\lambda - 4)\begin{vmatrix}1&-1&-1&-1\\0&\lambda&0&0\\0&0&\lambda&0\\0&0&0&\lambda\end{vmatrix}\\ &\ =\lambda^3(\lambda - 4) \end{align*} ∣λE−A∣ = λ−1−1−1−1−1λ−1−1−1−1−1λ−1−1−1−1−1λ−1 =(λ−4) 1111−1λ−1−1−1−1−1λ−1−1−1−1−1λ−1 =(λ−4) 1000−1λ00−10λ0−100λ =λ3(λ−4)
令 ∣ λ E − A ∣ = 0 \vert\lambda E - A\vert \ = 0 ∣λE−A∣ =0,解得特征值 λ 1 = 4 \lambda_1 \ = 4 λ1 =4, λ 2 = λ 3 = λ 4 = 0 \lambda_2\ =\lambda_3\ =\lambda_4 \ = 0 λ2 =λ3 =λ4 =0(三重根)。 - 求特征向量
- 当 λ 1 = 4 \lambda_1 \ = 4 λ1 =4时,解方程组 ( 4 E − A ) X = 0 (4E - A)X \ = 0 (4E−A)X =0, 4 E − A = ( 3 − 1 − 1 − 1 − 1 3 − 1 − 1 − 1 − 1 3 − 1 − 1 − 1 − 1 3 ) 4E - A\ =\begin{pmatrix}3&-1&-1&-1\\-1&3&-1&-1\\-1&-1&3&-1\\-1&-1&-1&3\end{pmatrix} 4E−A = 3−1−1−1−13−1−1−1−13−1−1−1−13 ,化为行最简形 ( 1 0 0 − 1 0 1 0 − 1 0 0 1 − 1 0 0 0 0 ) \begin{pmatrix}1&0&0&-1\\0&1&0&-1\\0&0&1&-1\\0&0&0&0\end{pmatrix} 100001000010−1−1−10 ,得到基础解系 ξ 1 = ( 1 , 1 , 1 , 1 ) \xi_1\ =(1,1,1,1) ξ1 =(1,1,1,1)。
- 当 λ 2 = λ 3 = λ 4 = 0 \lambda_2\ =\lambda_3\ =\lambda_4 \ = 0 λ2 =λ3 =λ4 =0时,解方程组 ( 0 E − A ) X = 0 (0E - A)X \ = 0 (0E−A)X =0, − A = ( − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 ) -A\ =\begin{pmatrix}-1&-1&-1&-1\\-1&-1&-1&-1\\-1&-1&-1&-1\\-1&-1&-1&-1\end{pmatrix} −A = −1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1 ,化为行最简形 ( 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 ) \begin{pmatrix}1&1&1&1\\0&0&0&0\\0&0&0&0\\0&0&0&0\end{pmatrix} 1000100010001000 ,得到基础解系 ξ 2 = ( 1 , − 1 , 0 , 0 ) \xi_2\ =(1, - 1,0,0) ξ2 =(1,−1,0,0), ξ 3 = ( 1 , 0 , − 1 , 0 ) \xi_3\ =(1,0, - 1,0) ξ3 =(1,0,−1,0), ξ 4 = ( 1 , 0 , 0 , − 1 ) \xi_4\ =(1,0,0, - 1) ξ4 =(1,0,0,−1)。
- 特征向量的处理
我们接着上面例2中求特征向量后的步骤继续:
特征向量的处理
-
ξ 1 \xi_1 ξ1单位化:
∣ ξ 1 ∣ = 1 2 + 1 2 + 1 2 + 1 2 = 2 \vert\xi_1\vert\ =\sqrt{1^2 + 1^2 + 1^2 + 1^2}\ =2 ∣ξ1∣ =12+12+12+12 =2,
γ 1 = ξ 1 ∣ ξ 1 ∣ = ( 1 2 , 1 2 , 1 2 , 1 2 ) \gamma_1\ =\frac{\xi_1}{\vert\xi_1\vert}\ =(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}) γ1 =∣ξ1∣ξ1 =(21,21,21,21)。 -
对 λ 2 = λ 3 = λ 4 = 0 \lambda_2 \ = \lambda_3 \ = \lambda_4 \ = 0 λ2 =λ3 =λ4 =0对应的特征向量 ξ 2 = ( 1 , − 1 , 0 , 0 ) \xi_2\ =(1, - 1,0,0) ξ2 =(1,−1,0,0), ξ 3 = ( 1 , 0 , − 1 , 0 ) \xi_3\ =(1,0, - 1,0) ξ3 =(1,0,−1,0), ξ 4 = ( 1 , 0 , 0 , − 1 ) \xi_4\ =(1,0,0, - 1) ξ4 =(1,0,0,−1)进行施密特正交化:
- 令
β
2
=
ξ
2
=
(
1
,
−
1
,
0
,
0
)
\beta_2 \ = \xi_2\ =(1, - 1,0,0)
β2 =ξ2 =(1,−1,0,0)。
- β 3 = ξ 3 − ( ξ 3 , β 2 ) ( β 2 , β 2 ) β 2 \beta_3\ =\xi_3 - \frac{(\xi_3,\beta_2)}{(\beta_2,\beta_2)}\beta_2 β3 =ξ3−(β2,β2)(ξ3,β2)β2
( ξ 3 , β 2 ) = 1 × 1 + 0 × ( − 1 ) + ( − 1 ) × 0 + 0 × 0 = 1 (\xi_3,\beta_2)\ =1\times1 + 0\times(-1)+(-1)\times0 + 0\times0 \ = 1 (ξ3,β2) =1×1+0×(−1)+(−1)×0+0×0 =1,
( β 2 , β 2 ) = 1 2 + ( − 1 ) 2 + 0 2 + 0 2 = 2 (\beta_2,\beta_2)\ =1^2 + (-1)^2 + 0^2 + 0^2 \ = 2 (β2,β2) =12+(−1)2+02+02 =2,
则 β 3 = ( 1 , 0 , − 1 , 0 ) − 1 2 ( 1 , − 1 , 0 , 0 ) = ( 1 2 , 1 2 , − 1 , 0 ) \beta_3\ =(1,0, - 1,0)-\frac{1}{2}(1, - 1,0,0)\ =(\frac{1}{2},\frac{1}{2}, - 1,0) β3 =(1,0,−1,0)−21(1,−1,0,0) =(21,21,−1,0)。
- β 4 = ξ 4 − ( ξ 4 , β 2 ) ( β 2 , β 2 ) β 2 − ( ξ 4 , β 3 ) ( β 3 , β 3 ) β 3 \beta_4\ =\xi_4 - \frac{(\xi_4,\beta_2)}{(\beta_2,\beta_2)}\beta_2 - \frac{(\xi_4,\beta_3)}{(\beta_3,\beta_3)}\beta_3 β4 =ξ4−(β2,β2)(ξ4,β2)β2−(β3,β3)(ξ4,β3)β3
( ξ 4 , β 2 ) = 1 × 1 + 0 × ( − 1 ) + 0 × 0 + ( − 1 ) × 0 = 1 (\xi_4,\beta_2)\ =1\times1 + 0\times(-1)+0\times0 + (-1)\times0 \ = 1 (ξ4,β2) =1×1+0×(−1)+0×0+(−1)×0 =1,
( ξ 4 , β 3 ) = 1 × 1 2 + 0 × 1 2 + 0 × ( − 1 ) + ( − 1 ) × 0 = 1 2 (\xi_4,\beta_3)\ =1\times\frac{1}{2}+0\times\frac{1}{2}+0\times(-1)+(-1)\times0\ =\frac{1}{2} (ξ4,β3) =1×21+0×21+0×(−1)+(−1)×0 =21,
( β 3 , β 3 ) = ( 1 2 ) 2 + ( 1 2 ) 2 + ( − 1 ) 2 + 0 2 = 3 2 (\beta_3,\beta_3)\ =(\frac{1}{2})^2 + (\frac{1}{2})^2 + (-1)^2 + 0^2\ =\frac{3}{2} (β3,β3) =(21)2+(21)2+(−1)2+02 =23,
则 β 4 = ( 1 , 0 , 0 , − 1 ) − 1 2 ( 1 , − 1 , 0 , 0 ) − 1 2 3 2 ( 1 2 , 1 2 , − 1 , 0 ) \beta_4\ =(1,0,0, - 1)-\frac{1}{2}(1, - 1,0,0)-\frac{\frac{1}{2}}{\frac{3}{2}}(\frac{1}{2},\frac{1}{2}, - 1,0) β4 =(1,0,0,−1)−21(1,−1,0,0)−2321(21,21,−1,0)
= ( 1 , 0 , 0 , − 1 ) − ( 1 2 , − 1 2 , 0 , 0 ) − ( 1 6 , 1 6 , − 1 3 , 0 ) \ =(1,0,0, - 1)-(\frac{1}{2},-\frac{1}{2},0,0)-(\frac{1}{6},\frac{1}{6},-\frac{1}{3},0) =(1,0,0,−1)−(21,−21,0,0)−(61,61,−31,0)
= ( 1 3 , 1 3 , 1 3 , − 1 ) \ =(\frac{1}{3},\frac{1}{3},\frac{1}{3}, - 1) =(31,31,31,−1)。
- 令
β
2
=
ξ
2
=
(
1
,
−
1
,
0
,
0
)
\beta_2 \ = \xi_2\ =(1, - 1,0,0)
β2 =ξ2 =(1,−1,0,0)。
-
对正交化后的向量 β 2 \beta_2 β2, β 3 \beta_3 β3, β 4 \beta_4 β4进行单位化:
- ∣ β 2 ∣ = 1 2 + ( − 1 ) 2 + 0 2 + 0 2 = 2 \vert\beta_2\vert\ =\sqrt{1^2 + (-1)^2 + 0^2 + 0^2}\ =\sqrt{2} ∣β2∣ =12+(−1)2+02+02 =2,
γ 2 = β 2 ∣ β 2 ∣ = ( 1 2 , − 1 2 , 0 , 0 ) \gamma_2\ =\frac{\beta_2}{\vert\beta_2\vert}\ =(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},0,0) γ2 =∣β2∣β2 =(21,−21,0,0)。
- ∣ β 3 ∣ = ( 1 2 ) 2 + ( 1 2 ) 2 + ( − 1 ) 2 + 0 2 = 6 2 \vert\beta_3\vert\ =\sqrt{(\frac{1}{2})^2 + (\frac{1}{2})^2 + (-1)^2 + 0^2}\ =\frac{\sqrt{6}}{2} ∣β3∣ =(21)2+(21)2+(−1)2+02 =26,
γ 3 = β 3 ∣ β 3 ∣ = ( 1 6 , 1 6 , − 2 6 , 0 ) \gamma_3\ =\frac{\beta_3}{\vert\beta_3\vert}\ =(\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}},0) γ3 =∣β3∣β3 =(61,61,−62,0)。
- ∣ β 4 ∣ = ( 1 3 ) 2 + ( 1 3 ) 2 + ( 1 3 ) 2 + ( − 1 ) 2 = 2 3 \vert\beta_4\vert\ =\sqrt{(\frac{1}{3})^2 + (\frac{1}{3})^2 + (\frac{1}{3})^2 + (-1)^2}\ =\frac{2}{\sqrt{3}} ∣β4∣ =(31)2+(31)2+(31)2+(−1)2 =32,
γ 4 = β 4 ∣ β 4 ∣ = ( 1 2 3 , 1 2 3 , 1 2 3 , − 3 2 ) \gamma_4\ =\frac{\beta_4}{\vert\beta_4\vert}\ =(\frac{1}{2\sqrt{3}},\frac{1}{2\sqrt{3}},\frac{1}{2\sqrt{3}},-\frac{\sqrt{3}}{2}) γ4 =∣β4∣β4 =(231,231,231,−23)。
构造正交矩阵 Q Q Q
令
Q
=
(
γ
1
,
γ
2
,
γ
3
,
γ
4
)
=
(
1
2
1
2
1
6
1
2
3
1
2
−
1
2
1
6
1
2
3
1
2
0
−
2
6
1
2
3
1
2
0
0
−
3
2
)
Q \ = (\gamma_1,\gamma_2,\gamma_3,\gamma_4)\ =\begin{pmatrix}\frac{1}{2}&\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{6}}&\frac{1}{2\sqrt{3}}\\\frac{1}{2}&-\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{6}}&\frac{1}{2\sqrt{3}}\\\frac{1}{2}&0&-\frac{2}{\sqrt{6}}&\frac{1}{2\sqrt{3}}\\\frac{1}{2}&0&0&-\frac{\sqrt{3}}{2}\end{pmatrix}
Q =(γ1,γ2,γ3,γ4) =
2121212121−21006161−620231231231−23
,
则
Q
T
A
Q
=
(
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
)
Q^TAQ\ =\begin{pmatrix}4&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0\end{pmatrix}
QTAQ =
4000000000000000
。