当前位置: 首页 > article >正文

STM32——HAL库开发笔记19(串口中断接收实验)(参考来源:b站铁头山羊)

本实验,我们以中断的方式使得串口发送数据控制LED的闪烁速度,发送1,慢闪;发送2,速度正常;发送3,快闪。

一、电路连接图

二、实现思路&CubeMx配置

1、实现控制LED的闪烁速度

uint32_t blinkInterval = 1000;  //闪灯间隔


void main(){
     while(1){
         //点亮LED

         HAL_Delay(blinkInterval);

         //熄灭LED

         HAL_Delay(blinkInterval);
      }
}

将uint32_t blinkInterval = 1000;写在下图所示位置

闪灯程序如下:

 while (1)
  {
    /* USER CODE END WHILE */
      HAL_GPIO_WritePin(GPIOC,GPIO_PIN_13,GPIO_PIN_RESET);       //点亮LED

      HAL_Delay(blinkInterval);

       HAL_GPIO_WritePin(GPIOC,GPIO_PIN_13,GPIO_PIN_RESET);     //熄灭LED

       HAL_Delay(blinkInterval);
    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

通过串口接收命令

回到CubeMX.

使能中断

然后生成代码,等待后续操作。

三、编程接口

HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart,
                                                 uint8 t *pData,
                                                 uint16t size);


作用:使用中断方式来接受一定数量的数据
参数:huart  :串口句柄指针
      
     pData : 填写接收缓冲区的指针

     size :要接收数据的数量
   
此外,还需要个回调函数

void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart);

所以size字节接收完成后调用该函数

例:用中断方式接收5个字节的数组
uint8_t dataRcvd[5];  //接收缓冲区

 void main(void)
   {
       HAL_UART_Receive_IT(&huart1,dataRcvd , 5);
       while(1){//常规程序}
   }

void  HAL_UART_RxCpltCallback(...)        //回调函数
{

    //处理数据
    print(dataRcvd);
}





四、编程思路

五、代码(main.c)

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2025 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
static uint32_t blinkInterval = 1000;
static uint8_t dataRcvd;
/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */


//  中断程序
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)            
{
	if (huart == &huart1)     //判断传过来的是不是句柄1的句柄
	{
		if (dataRcvd == '1')
		{
			blinkInterval = 1000;
		
   	}
		else if(dataRcvd == '2')
		{
				blinkInterval = 300;
    }
		else if(dataRcvd == '3')
		{
				blinkInterval = 50;
    }
			HAL_UART_Receive_IT(&huart1 , &dataRcvd , 1);
	}
}
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
	HAL_UART_Receive_IT(&huart1 , &dataRcvd , 1);
	
	
	
  while (1)
  {
    /* USER CODE END WHILE */
		 HAL_GPIO_WritePin(GPIOC , GPIO_PIN_13 , GPIO_PIN_RESET);
		 HAL_Delay(blinkInterval);
		 HAL_GPIO_WritePin(GPIOC , GPIO_PIN_13 , GPIO_PIN_SET);
		 HAL_Delay(blinkInterval);
    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}
	

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

最后将代码编译下载即可实现本实验功能。


http://www.kler.cn/a/546873.html

相关文章:

  • 第3节:回归实战【新冠人数预测】
  • 高效开发!使用Chrome对MoonBit生成的Wasm进行性能分析!
  • AI大模型(如GPT、BERT等)可以通过自然语言处理(NLP)和机器学习技术,显著提升测试效率
  • FacePoke详细使用指南:如何利用开源AI工具优化照片人物表情
  • vue和Django快速创建项目
  • eval 内置函数用法
  • 时间盲注作业
  • (前端基础)HTML(一)
  • 【Docker 】虚悬镜像:深入理解与清理实践
  • 【工业安全】-CVE-2024-30891- Tenda AC18路由器 命令注入漏洞
  • 【前端框架与库】「React 全面解析」:从 JSX 语法到高阶组件,深度剖析前端开发中的核心概念与最佳实践
  • 算法与数据结构(存在重复元素)
  • uniapp开发h5部署到服务器
  • 红队视角出发的k8s敏感信息收集——服务发现与 DNS 探测
  • 6 Flink Table 和相关概念
  • android 的抓包工具
  • 使用 Python 爬虫获取微店快递费用 item_fee API 接口数据
  • 光谱相机在天文学领域的应用
  • docker学习---第3步:docker实操大模型
  • Windows 图形显示驱动开发-WDDM 2.0 -GPU虚拟寻址概述