STM32——HAL库开发笔记19(串口中断接收实验)(参考来源:b站铁头山羊)
本实验,我们以中断的方式使得串口发送数据控制LED的闪烁速度,发送1,慢闪;发送2,速度正常;发送3,快闪。
一、电路连接图
二、实现思路&CubeMx配置
1、实现控制LED的闪烁速度
uint32_t blinkInterval = 1000; //闪灯间隔
void main(){
while(1){
//点亮LED
HAL_Delay(blinkInterval);
//熄灭LED
HAL_Delay(blinkInterval);
}
}
将uint32_t blinkInterval = 1000;写在下图所示位置
闪灯程序如下:
while (1)
{
/* USER CODE END WHILE */
HAL_GPIO_WritePin(GPIOC,GPIO_PIN_13,GPIO_PIN_RESET); //点亮LED
HAL_Delay(blinkInterval);
HAL_GPIO_WritePin(GPIOC,GPIO_PIN_13,GPIO_PIN_RESET); //熄灭LED
HAL_Delay(blinkInterval);
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
通过串口接收命令
回到CubeMX.
使能中断
然后生成代码,等待后续操作。
三、编程接口
HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart,
uint8 t *pData,
uint16t size);
作用:使用中断方式来接受一定数量的数据
参数:huart :串口句柄指针
pData : 填写接收缓冲区的指针
size :要接收数据的数量
此外,还需要个回调函数
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart);
所以size字节接收完成后调用该函数
例:用中断方式接收5个字节的数组
uint8_t dataRcvd[5]; //接收缓冲区
void main(void)
{
HAL_UART_Receive_IT(&huart1,dataRcvd , 5);
while(1){//常规程序}
}
void HAL_UART_RxCpltCallback(...) //回调函数
{
//处理数据
print(dataRcvd);
}
四、编程思路
五、代码(main.c)
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
static uint32_t blinkInterval = 1000;
static uint8_t dataRcvd;
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
// 中断程序
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
if (huart == &huart1) //判断传过来的是不是句柄1的句柄
{
if (dataRcvd == '1')
{
blinkInterval = 1000;
}
else if(dataRcvd == '2')
{
blinkInterval = 300;
}
else if(dataRcvd == '3')
{
blinkInterval = 50;
}
HAL_UART_Receive_IT(&huart1 , &dataRcvd , 1);
}
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_USART1_UART_Init();
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
HAL_UART_Receive_IT(&huart1 , &dataRcvd , 1);
while (1)
{
/* USER CODE END WHILE */
HAL_GPIO_WritePin(GPIOC , GPIO_PIN_13 , GPIO_PIN_RESET);
HAL_Delay(blinkInterval);
HAL_GPIO_WritePin(GPIOC , GPIO_PIN_13 , GPIO_PIN_SET);
HAL_Delay(blinkInterval);
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
最后将代码编译下载即可实现本实验功能。