当前位置: 首页 > article >正文

【Redis】高可用:Redis的主从复制是怎么实现的?

【Redis】高可用:主从复制详解

我们知道要避免单点故障,即保证高可用,便需要冗余(副本)方式提供集群服务。而Redis 提供了主从库模式,以保证数据副本的一致,主从库之间采用的是读写分离的方式。本文主要阐述Redis的主从复制。

image-20221107082220502

文章目录

  • 【Redis】高可用:主从复制详解
    • 搭建主从架构
    • 主从复制概述
    • 主从复制原理
      • 全量复制
      • 增量复制
    • 更深入理解
      • 命令传播
      • 分摊主服务器的压力
      • 为什么主从全量复制使用RDB而不使用AOF?
      • 当主服务器不进行持久化时复制的安全性
      • 读写分离及其中的问题
    • 主从机制优缺点
    • 小结
    • 面试题
      • Redis主从节点时长连接还是短连接?
      • 怎么判断 Redis 某个节点是否正常工作?
      • 主从复制架构中,过期key如何处理?
      • Redis 是同步复制还是异步复制?
      • 主从复制中两个 Buffer(replication buffer 、repl backlog buffer)有什么区别?
      • 如何应对主从数据不一致?
      • 主从切换如何减少数据丢失?
        • 异步复制同步丢失
        • 集群产生脑裂数据丢失
      • 主从如何做到故障自动切换?

搭建主从架构

例如,现在有实例 1(ip:172.16.19.3)和实例 2(ip:172.16.19.5),我们在实例 2 上执行以下这个命令后,实例 2 就变成了实例 1 的从库,并从实例 1 上复制数据:

replicaof 172.16.19.3 6379

主从复制概述

**主从复制:**是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(master),后者称为从节点(slave);数据的复制是单向的,只能由主节点到从节点。

主从复制的作用主要包括:

  • 数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
  • 故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
  • 负载均衡: 在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
  • 高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

不过,由于数据都是存储在一台服务器上,如果出事就完犊子了,比如:

  • 如果服务器发生了宕机,由于数据恢复是需要点时间,那么这个期间是无法服务新的请求的;
  • 如果这台服务器的硬盘出现了故障,可能数据就都丢失了。

要避免这种单点故障,最好的办法是将数据备份到其他服务器上,让这些服务器也可以对外提供服务,这样即使有一台服务器出现了故障,其他服务器依然可以继续提供服务。

图片

主从库之间采用的是读写分离的方式。

  • 读操作:主库、从库都可以接收;
  • 写操作:首先到主库执行,然后,主库将写操作同步给从库。

图片

主从复制原理

  • 全量(同步)复制:比如第一次同步时
  • 增量(同步)复制:只会把主从库网络断连期间主库收到的命令,同步给从库

Redis主从复制的工作流程大概可以分为如下几步:

image-20230209222709872

  1. 保存主节点(master)信息 这一步只是保存主节点信息,保存主节点的ip和port。
  2. 主从建立连接 从节点(slave)发现新的主节点后,会尝试和主节点建立网络连接。
  3. 发送ping命令 连接建立成功后从节点发送ping请求进行首次通信,主要是检测主从之间网络套接字是否可用、主节点当前是否可接受处理命令。
  4. 权限验证 如果主节点要求密码验证,从节点必须正确的密码才能通过验证。
  5. 同步数据集 主从复制连接正常通信后,主节点会把持有的数据全部发送给从节点。
  6. 命令持续复制 接下来主节点会持续地把写命令发送给从节点,保证主从数据一致性。

全量复制

主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点,流程:

image-20221107083921692

这里有一个问题,master如何得知salve是第一次来连接呢??

有几个概念,可以作为判断依据:

  • Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid
  • offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。

因此slave做数据同步,必须向master声明自己的replication id 和offset,master才可以判断到底需要同步哪些数据。

因为slave原本也是一个master,有自己的replid和offset,当第一次变成slave,与master建立连接时,发送的replid和offset是自己的replid和offset。

master判断发现slave发送来的replid与自己的不一致,说明这是一个全新的slave,就知道要做全量同步了。

master会将自己的replid和offset都发送给这个slave,slave保存这些信息。以后slave的replid就与master一致了。

因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致

image-20221107084100154

完整流程描述:

  • slave节点请求增量同步
  • master节点判断replid,发现不一致,拒绝增量同步
  • master将完整内存数据生成RDB,发送RDB到slave
  • slave清空本地数据,加载master的RDB
  • master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave
  • slave执行接收到的命令,保持与master之间的同步

(最后两步参考AOF持久化机制)

增量复制

为什么会设计增量复制

主从服务器在完成第一次同步后,就会基于长连接进行命令传播。

可是,网络总是不按套路出牌的嘛,说延迟就延迟,说断开就断开。

如果主从服务器间的网络连接断开了,那么就无法进行命令传播了,这时从服务器的数据就没办法和主服务器保持一致了,客户端就可能从「从服务器」读到旧的数据。

图片

增量复制的流程

什么是增量同步?就是只更新slave与master存在差异的部分数据。如图:

image-20221107084509512

主要有三个步骤:

  • 从服务器在恢复网络后,会发送 psync 命令给主服务器,此时的 psync 命令里的 offset 参数不是 -1;
  • 主服务器收到该命令后,然后用 CONTINUE 响应命令告诉从服务器接下来采用增量复制的方式同步数据;
  • 然后主服务将主从服务器断线期间,所执行的写命令发送给从服务器,然后从服务器执行这些命令。

那么关键的问题来了,主服务器怎么知道要将哪些增量数据发送给从服务器呢?

答案藏在这两个东西里:

  • repl_backlog_buffer,是一个「环形」缓冲区,用于主从服务器断连后,从中找到差异的数据;
  • replication offset,标记上面那个缓冲区的同步进度,主从服务器都有各自的偏移量,主服务器使用 master_repl_offset 来记录自己「」到的位置,从服务器使用 slave_repl_offset 来记录自己「」到的位置。

repl_backlog原理

master怎么知道slave与自己的数据差异在哪里呢?

这就要说到全量同步时的repl_baklog文件了。

这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖。

repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset,和slave已经拷贝到的offset:

image-20210725153359022

slave与master的offset之间的差异,就是salve需要增量拷贝的数据了。

随着不断有数据写入,master的offset逐渐变大,slave也不断的拷贝,追赶master的offset:

image-20210725153524190

直到数组被填满:

image-20210725153715910

此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到slave的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分。

但是,如果slave出现网络阻塞,导致master的offset远远超过了slave的offset:

image-20210725153937031

如果master继续写入新数据,其offset就会覆盖旧的数据,直到将slave现在的offset也覆盖:

image-20210725154155984

棕色框中的红色部分,就是尚未同步,但是却已经被覆盖的数据。此时如果slave恢复,需要同步,却发现自己的offset都没有了,无法完成增量同步了。只能做全量同步。

image-20210725154216392

那么在网络恢复时,如果从服务器想读的数据已经被覆盖了,主服务器就会采用全量同步,这个方式比增量同步的性能损耗要大很多。

因此,为了避免在网络恢复时,主服务器频繁地使用全量同步的方式,我们应该调整下 repl_backlog_buffer 缓冲区大小,尽可能的大一些,减少出现从服务器要读取的数据被覆盖的概率,从而使得主服务器采用增量同步的方式。

那 repl_backlog_buffer 缓冲区具体要调整到多大呢?

repl_backlog_buffer 最小的大小可以根据这面这个公式估算。

图片

我来解释下这个公式的意思:

  • second 为从服务器断线后重新连接上主服务器所需的平均 时间(以秒计算)。
  • write_size_per_second 则是主服务器平均每秒产生的写命令数据量大小。

举个例子,如果主服务器平均每秒产生 1 MB 的写命令,而从服务器断线之后平均要 5 秒才能重新连接主服务器。

那么 repl_backlog_buffer 大小就不能低于 5 MB,否则新写地命令就会覆盖旧数据了。

当然,为了应对一些突发的情况,可以将 repl_backlog_buffer 的大小设置为此基础上的 2 倍,也就是 10 MB。


更深入理解

命令传播

主从服务器在完成第一次同步后,双方之间就会维护一个 TCP 连接。

图片

后续主服务器可以通过这个连接继续将写操作命令传播给从服务器,然后从服务器执行该命令,使得与主服务器的数据库状态相同。

而且这个连接是长连接的,目的是避免频繁的 TCP 连接和断开带来的性能开销。

上面的这个过程被称为基于长连接的命令传播,通过这种方式来保证第一次同步后的主从服务器的数据一致性。

分摊主服务器的压力

在前面的分析中,我们可以知道主从服务器在第一次数据同步的过程中,主服务器会做两件耗时的操作:生成 RDB 文件和传输 RDB 文件。

主服务器是可以有多个从服务器的,如果从服务器数量非常多,而且都与主服务器进行全量同步的话,就会带来两个问题:

  • 由于是通过 bgsave 命令来生成 RDB 文件的,那么主服务器就会忙于使用 fork() 创建子进程,如果主服务器的内存数据非大,在执行 fork() 函数时是会阻塞主线程的,从而使得 Redis 无法正常处理请求;
  • 传输 RDB 文件会占用主服务器的网络带宽,会对主服务器响应命令请求产生影响。

这种情况就好像,刚创业的公司,由于人不多,所以员工都归老板一个人管,但是随着公司的发展,人员的扩充,老板慢慢就无法承担全部员工的管理工作了。

要解决这个问题,老板就需要设立经理职位,由经理管理多名普通员工,然后老板只需要管理经理就好。

Redis 也是一样的,从服务器可以有自己的从服务器,我们可以把拥有从服务器的从服务器当作经理角色,它不仅可以接收主服务器的同步数据,自己也可以同时作为主服务器的形式将数据同步给从服务器,组织形式如下图:

图片

通过这种方式,主服务器生成 RDB 和传输 RDB 的压力可以分摊到充当经理角色的从服务器

那具体怎么做到的呢?

其实很简单,我们在「从服务器」上执行下面这条命令,使其作为目标服务器的从服务器:

replicaof <目标服务器的IP> 6379

此时如果目标服务器本身也是「从服务器」,那么该目标服务器就会成为「经理」的角色,不仅可以接受主服务器同步的数据,也会把数据同步给自己旗下的从服务器,从而减轻主服务器的负担。

为什么主从全量复制使用RDB而不使用AOF?

  • RDB文件内容是经过压缩的二进制数据(不同数据类型数据做了针对性优化),文件很小。而AOF文件记录的是每一次写操作的命令,写操作越多文件会变得很大,其中还包括很多对同一个key的多次冗余操作。在主从全量数据同步时,传输RDB文件可以尽量降低对主库机器网络带宽的消耗,从库在加载RDB文件时,一是文件小,读取整个文件的速度会很快,二是因为RDB文件存储的都是二进制数据,从库直接按照RDB协议解析还原数据即可,速度会非常快,而AOF需要依次重放每个写命令,这个过程会经历冗长的处理逻辑,恢复速度相比RDB会慢得多,所以使用RDB进行主从全量复制的成本最低。

  • 假设要使用AOF做全量复制,意味着必须打开AOF功能,打开AOF就要选择文件刷盘的策略,选择不当会严重影响Redis性能。而RDB只有在需要定时备份和主从全量复制数据时才会触发生成一次快照。而在很多丢失数据不敏感的业务场景,其实是不需要开启AOF的。

当主服务器不进行持久化时复制的安全性

为什么不持久化的主服务器自动重启非常危险呢?为了更好的理解这个问题,看下面这个失败的例子,其中主服务器和从服务器中数据库都被删除了。

  • 我们设置节点A为主服务器,关闭持久化,节点B和C从节点A复制数据。
  • 这时出现了一个崩溃,但Redis具有自动重启系统,重启了进程,因为关闭了持久化,节点重启后只有一个空的数据集。
  • 节点B和C从节点A进行复制,现在节点A是空的,所以节点B和C上的复制数据也会被删除。
  • 当在高可用系统中使用Redis Sentinel,关闭了主服务器的持久化,并且允许自动重启,这种情况是很危险的。比如主服务器可能在很短的时间就完成了重启,以至于Sentinel都无法检测到这次失败,那么上面说的这种失败的情况就发生了。

如果数据比较重要,并且在使用主从复制时关闭了主服务器持久化功能的场景中,都应该禁止实例自动重启。

读写分离及其中的问题

在主从复制基础上实现的读写分离,可以实现Redis的读负载均衡:由主节点提供写服务,由一个或多个从节点提供读服务(多个从节点既可以提高数据冗余程度,也可以最大化读负载能力);在读负载较大的应用场景下,可以大大提高Redis服务器的并发量。下面介绍在使用Redis读写分离时,需要注意的问题。

  • 延迟与不一致问题

前面已经讲到,由于主从复制的命令传播是异步的,延迟与数据的不一致不可避免。如果应用对数据不一致的接受程度程度较低,可能的优化措施包括:优化主从节点之间的网络环境(如在同机房部署);监控主从节点延迟(通过offset)判断,如果从节点延迟过大,通知应用不再通过该从节点读取数据;使用集群同时扩展写负载和读负载等。

  • 数据过期问题

在单机版Redis中,存在两种删除策略:

惰性删除:服务器不会主动删除数据,只有当客户端查询某个数据时,服务器判断该数据是否过期,如果过期则删除。

定期删除:服务器执行定时任务删除过期数据,但是考虑到内存和CPU的折中(删除会释放内存,但是频繁的删除操作对CPU不友好),该删除的频率和执行时间都受到了限制。

在主从复制场景下,为了主从节点的数据一致性,从节点不会主动删除数据,而是由主节点控制从节点中过期数据的删除。由于主节点的惰性删除和定期删除策略,都不能保证主节点及时对过期数据执行删除操作,因此,当客户端通过Redis从节点读取数据时,很容易读取到已经过期的数据。

Redis 3.2中,从节点在读取数据时,增加了对数据是否过期的判断:如果该数据已过期,则不返回给客户端;将Redis升级到3.2可以解决数据过期问题。

  • 故障切换问题

在没有使用哨兵的读写分离场景下,应用针对读和写分别连接不同的Redis节点;当主节点或从节点出现问题而发生更改时,需要及时修改应用程序读写Redis数据的连接;连接的切换可以手动进行,或者自己写监控程序进行切换,但前者响应慢、容易出错,后者实现复杂,成本都不算低。

  • 总结

在使用读写分离之前,可以考虑其他方法增加Redis的读负载能力:如尽量优化主节点(减少慢查询、减少持久化等其他情况带来的阻塞等)提高负载能力;使用Redis集群同时提高读负载能力和写负载能力等。如果使用读写分离,可以使用哨兵,使主从节点的故障切换尽可能自动化,并减少对应用程序的侵入。

主从机制优缺点

主从机制其实也是为后续的一些高可用机制打下了基础,但是本身也存在一些缺陷,当然在后续的高可用机制中得到了解决,具体如下:

  • 优点:
    • 能够为后续的高可用机制打下基础
    • 在持久化的基础上能够将数据同步到其他机器,在极端情况下做到灾备的效果
    • 能够通过主写从读的形式实现读写分离提升Redis整体吞吐,并且读的性能可以通过对从节点进行线性扩容无限提升
  • 缺点:
    • 全量数据同步时如果数据量比较大,在之前会导致线上短暂性的卡顿
    • 一旦主节点宕机,从节点晋升为主节点,同时需要修改应用方的主节点地址,还需要命令所有从节点去复制新的主节点,整个过程需要人工干预
    • 写入的QPS性能受到主节点限制,虽然主从复制能够通过读写分离来提升整体性能,但是只有从节点能够做到线性扩容升吞吐,写入的性能还是受到主节点限制
    • 木桶效应,整个Redis节点群能够存储的数据容量受到所有节点中内存最小的那台限制,比如一主两从架构:master=32GB、slave1=32GB、slave2=16GB,那么整个Redis节点群能够存储的最大容量为16GB

小结

简述全量同步和增量同步区别?

  • 全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。
  • 增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave

什么时候执行全量同步?

  • slave节点第一次连接master节点时
  • slave节点断开时间太久,repl_baklog中的offset已经被覆盖时

什么时候执行增量同步?

  • slave节点断开又恢复,并且在repl_baklog中能找到offset时

主从复制共有三种模式:全量复制、基于长连接的命令传播、增量复制

主从服务器第一次同步的时候,就是采用全量复制,此时主服务器会两个耗时的地方,分别是生成 RDB 文件和传输 RDB 文件。为了避免过多的从服务器和主服务器进行全量复制,可以把一部分从服务器升级为「经理角色」,让它也有自己的从服务器,通过这样可以分摊主服务器的压力。

第一次同步完成后,主从服务器都会维护着一个长连接,主服务器在接收到写操作命令后,就会通过这个连接将写命令传播给从服务器,来保证主从服务器的数据一致性。

如果遇到网络断开,增量复制就可以上场了,不过这个还跟 repl_backlog_size 这个大小有关系。

如果它配置的过小,主从服务器网络恢复时,可能发生「从服务器」想读的数据已经被覆盖了,那么这时就会导致主服务器采用全量复制的方式。所以为了避免这种情况的频繁发生,要调大这个参数的值,以降低主从服务器断开后全量同步的概率。

面试题

Redis主从节点时长连接还是短连接?

长连接

怎么判断 Redis 某个节点是否正常工作?

Redis 判断节点是否正常工作,基本都是通过互相的 ping-pong 心态检测机制,如果有一半以上的节点去 ping 一个节点的时候没有 pong 回应,集群就会认为这个节点挂掉了,会断开与这个节点的连接。

Redis 主从节点发送的心态间隔是不一样的,而且作用也有一点区别:

  • Redis 主节点默认每隔 10 秒对从节点发送 ping 命令,判断从节点的存活性和连接状态,可通过参数repl-ping-slave-period控制发送频率。
  • Redis 从节点每隔 1 秒发送 replconf ack{offset} 命令,给主节点上报自身当前的复制偏移量,目的是为了:
    • 实时监测主从节点网络状态;
    • 上报自身复制偏移量, 检查复制数据是否丢失, 如果从节点数据丢失, 再从主节点的复制缓冲区中拉取丢失数据。

主从复制架构中,过期key如何处理?

主节点处理了一个key或者通过淘汰算法淘汰了一个key,这个时间主节点模拟一条del命令发送给从节点,从节点收到该命令后,就进行删除key的操作。

Redis 是同步复制还是异步复制?

Redis 主节点每次收到写命令之后,先写到内部的缓冲区,然后异步发送给从节点。

主从复制中两个 Buffer(replication buffer 、repl backlog buffer)有什么区别?

replication buffer 、repl backlog buffer 区别如下:

  • 出现的阶段不一样:
    • repl backlog buffer 是在增量复制阶段出现,一个主节点只分配一个 repl backlog buffer
    • replication buffer 是在全量复制阶段和增量复制阶段都会出现,主节点会给每个新连接的从节点,分配一个 replication buffer
  • 这两个 Buffer 都有大小限制的,当缓冲区满了之后,发生的事情不一样:
    • 当 repl backlog buffer 满了,因为是环形结构,会直接覆盖起始位置数据;
    • 当 replication buffer 满了,会导致连接断开,删除缓存,从节点重新连接,重新开始全量复制

如何应对主从数据不一致?

为什么会出现主从数据不一致?

主从数据不一致,就是指客户端从从节点中读取到的值和主节点中的最新值并不一致。

之所以会出现主从数据不一致的现象,是因为主从节点间的命令复制是异步进行的,所以无法实现强一致性保证(主从数据时时刻刻保持一致)。

具体来说,在主从节点命令传播阶段,主节点收到新的写命令后,会发送给从节点。但是,主节点并不会等到从节点实际执行完命令后,再把结果返回给客户端,而是主节点自己在本地执行完命令后,就会向客户端返回结果了。如果从节点还没有执行主节点同步过来的命令,主从节点间的数据就不一致了。

如何如何应对主从数据不一致?

第一种方法,尽量保证主从节点间的网络连接状况良好,避免主从节点在不同的机房。

第二种方法,可以开发一个外部程序来监控主从节点间的复制进度。具体做法:

  • Redis 的 INFO replication 命令可以查看主节点接收写命令的进度信息(master_repl_offset)和从节点复制写命令的进度信息(slave_repl_offset),所以,我们就可以开发一个监控程序,先用 INFO replication 命令查到主、从节点的进度,然后,我们用 master_repl_offset 减去 slave_repl_offset,这样就能得到从节点和主节点间的复制进度差值了。
  • 如果某个从节点的进度差值大于我们预设的阈值,我们可以让客户端不再和这个从节点连接进行数据读取,这样就可以减少读到不一致数据的情况。不过,为了避免出现客户端和所有从节点都不能连接的情况,我们需要把复制进度差值的阈值设置得大一些。

主从切换如何减少数据丢失?

主从切换过程中,产生数据丢失的情况有两种:

  • 异步复制同步丢失
  • 集群产生脑裂数据丢失

我们不可能保证数据完全不丢失,只能做到使得尽量少的数据丢失。

异步复制同步丢失

对于 Redis 主节点与从节点之间的数据复制,是异步复制的,当客户端发送写请求给主节点的时候,客户端会返回 ok,接着主节点将写请求异步同步给各个从节点,但是如果此时主节点还没来得及同步给从节点时发生了断电,那么主节点内存中的数据会丢失。

减少异步复制的数据丢失的方案

Redis 配置里有一个参数 min-slaves-max-lag,表示一旦所有的从节点数据复制和同步的延迟都超过了 min-slaves-max-lag 定义的值,那么主节点就会拒绝接收任何请求。

假设将 min-slaves-max-lag 配置为 10s 后,根据目前 master->slave 的复制速度,如果数据同步完成所需要时间超过10s,就会认为 master 未来宕机后损失的数据会很多,master 就拒绝写入新请求。这样就能将 master 和 slave 数据差控制在10s内,即使 master 宕机也只是这未复制的 10s 数据。

那么对于客户端,当客户端发现 master 不可写后,我们可以采取降级措施,将数据暂时写入本地缓存和磁盘中,在一段时间(等 master 恢复正常)后重新写入 master 来保证数据不丢失,也可以将数据写入 kafka 消息队列,等 master 恢复正常,再隔一段时间去消费 kafka 中的数据,让将数据重新写入 master 。

集群产生脑裂数据丢失

先来理解集群的脑裂现象,这就好比一个人有两个大脑,那么到底受谁控制呢?

那么在 Redis 中,集群脑裂产生数据丢失的现象是怎样的呢?

在 Redis 主从架构中,部署方式一般是「一主多从」,主节点提供写操作,从节点提供读操作。

如果主节点的网络突然发生了问题,它与所有的从节点都失联了,但是此时的主节点和客户端的网络是正常的,这个客户端并不知道 Redis 内部已经出现了问题,还在照样的向这个失联的主节点写数据(过程A),此时这些数据被主节点缓存到了缓冲区里,因为主从节点之间的网络问题,这些数据都是无法同步给从节点的。

这时,哨兵也发现主节点失联了,它就认为主节点挂了(但实际上主节点正常运行,只是网络出问题了),于是哨兵就会在从节点中选举出一个 leeder 作为主节点,这时集群就有两个主节点了 —— 脑裂出现了

这时候网络突然好了,哨兵因为之前已经选举出一个新主节点了,它就会把旧主节点降级为从节点(A),然后从节点(A)会向新主节点请求数据同步,因为第一次同步是全量同步的方式,此时的从节点(A)会清空掉自己本地的数据,然后再做全量同步。所以,之前客户端在过程 A 写入的数据就会丢失了,也就是集群产生脑裂数据丢失的问题

总结一句话就是:由于网络问题,集群节点之间失去联系。主从数据不同步;重新平衡选举,产生两个主服务。等网络恢复,旧主节点会降级为从节点,再与新主节点进行同步复制的时候,由于会从节点会清空自己的缓冲区,所以导致之前客户端写入的数据丢失了。

减少脑裂的数据丢的方案

当主节点发现「从节点下线的数量太多」,或者「网络延迟太大」的时候,那么主节点会禁止写操作,直接把错误返回给客户端。

在 Redis 的配置文件中有两个参数我们可以设置:

  • min-slaves-to-write x,主节点必须要有至少 x 个从节点连接,如果小于这个数,主节点会禁止写数据。
  • min-slaves-max-lag x,主从数据复制和同步的延迟不能超过 x 秒,如果主从同步的延迟超过 x 秒,主节点会禁止写数据。

我们可以把 min-slaves-to-write 和 min-slaves-max-lag 这两个配置项搭配起来使用,分别给它们设置一定的阈值,假设为 N 和 T。

这两个配置项组合后的要求是,主节点连接的从节点中至少有 N 个从节点,「并且」主节点进行数据复制时的 ACK 消息延迟不能超过 T 秒,否则,主节点就不会再接收客户端的写请求了。

即使原主节点是假故障,它在假故障期间也无法响应哨兵心跳,也不能和从节点进行同步,自然也就无法和从节点进行 ACK 确认了。这样一来,min-slaves-to-write 和 min-slaves-max-lag 的组合要求就无法得到满足,原主节点就会被限制接收客户端写请求,客户端也就不能在原主节点中写入新数据了

等到新主节点上线时,就只有新主节点能接收和处理客户端请求,此时,新写的数据会被直接写到新主节点中。而原主节点会被哨兵降为从节点,即使它的数据被清空了,也不会有新数据丢失。我再来给你举个例子。

假设我们将 min-slaves-to-write 设置为 1,把 min-slaves-max-lag 设置为 12s,把哨兵的 down-after-milliseconds 设置为 10s,主节点因为某些原因卡住了 15s,导致哨兵判断主节点客观下线,开始进行主从切换。同时,因为原主节点卡住了 15s,没有一个从节点能和原主节点在 12s 内进行数据复制,原主节点也无法接收客户端请求了。这样一来,主从切换完成后,也只有新主节点能接收请求,不会发生脑裂,也就不会发生数据丢失的问题了。

主从如何做到故障自动切换?

主节点挂了 ,从节点是无法自动升级为主节点的,这个过程需要人工处理,在此期间 Redis 无法对外提供写操作。

此时,Redis 哨兵机制就登场了,哨兵在发现主节点出现故障时,由哨兵自动完成故障发现和故障转移,并通知给应用方,从而实现高可用性。


http://www.kler.cn/a/5673.html

相关文章:

  • Autoencoder(李宏毅)机器学习 2023 Spring HW8 (Boss Baseline)
  • C语言中void的高级应用
  • spring boot 集成 postgresql mybatis-plus swagger pagehelper
  • Hystrix学习笔记
  • Android Webview隐藏部分div
  • 【从零开始学习 UVM】7.3、Driver Sequencer Handshake —— get() 和 put() 方法详解【了解即可】
  • 【二阶锥规划】考虑气电联合需求响应的气电综合能源配网系统协调优化运行【IEEE33节点】(Matlab代码实现)
  • 全面了解ITSS认证基础知识
  • 短视频矩阵发布系统 如何定时自动发布?
  • 第14章_视图
  • C的实用笔记29——函数指针(通过指针引用函数)
  • PMP考试都是什么题?
  • C语言实现拼图求解
  • 【lwIP(第十三章)】WebServer协议
  • v-md-editor使用
  • 【C++】STL—— list 模拟实现
  • 【JAVA】Java进阶(一)
  • Leetcode.764 最大加号标志
  • 服务网格领域的百花齐放,是否存在一个更优解?
  • 【K8S系列】深入解析有状态服务
  • .NET开发 DataTable与List<T>相互转换