【二阶锥规划】考虑气电联合需求响应的气电综合能源配网系统协调优化运行【IEEE33节点】(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码及数据
💥1 概述
参考文献:
如何利用电力系统与天然气系统的耦合特性来协调优化气电综合能源系统的能量传输、分配问 题,成为近年来国内外学者们的研究热点。传统的气电互联系统只能靠燃气机组实现天然气到电能
的单向转换,随着电转气(power-to-gas,P2G)技术以及设备的日益成熟,如今已经可以实现能量在气电互联系统间的双向流动。文献[5]考虑风电和 P2G技术的应用过程,建立基于机会约束的双层气电综合系统经济调度模型;文献[6]建立含 P2G 设备的气电综合系统优化调度模型,并分析不同 P2G 过程对传输网络的运行影响;文献[7]以系统运行成本最小化和可再生能源利用率最大化为目标函数,构建了含 P2G 过程的气电综合能源系统优化运行模型。目前,大多数研究主要针对气电综合能源系统主网的优化调度问题,其中对于天然气系统主网的建模主要基于稳态天然气潮流方程。文献[8]建立稳态气电综合能源系统短期协调优化调度模型,并提出利用引力搜索算法进行求解;文献[9]利用 Weymouth稳态天然气潮流方程建立基于分布式框架的气电综合系统协同优化调度模型,并提出应用交替方向乘法器方法来迭代求解;文献[10]利用基于增强约束的多目标优化方法来求解稳态气电综合系统优化调度模型。基于稳态天然气潮流的优化模型求解方法已经发展得较为成熟,上述研究都集中在气电综合能源系统的主网优化调度问题方面,配网优化调度方面的研究还较少。由于电力和天然气系统中的某些物理运行特性,上述研究成果中所建立的气电综合能源系统优化运行模型大多数都是非线性的,这将会给求解带来较大的困难。针对气电综合能源系统中非线性约束条件的处理方法,目前主要分为两大类:一是利用线性化方法将原问题转换为混合整数线性规划模型;二是利用锥优化方法将原问题转换为混合整数二阶锥规划模型。文献[11]运用分段线性化方法对 Weymouth 天然气潮流方程进行处理,将主网气电综合系统优化调度模型转换为混合整数线性规划问题进行求解;文献[12]运用一阶泰勒级数展开方法对天然气潮流方程进行线性化处理;文献[13]对输电网、输气网非线性潮流方程同时进行了二阶锥松弛处理,以达到气电综合系统的联合优化规划;文献[14]对天然气潮流方程进行二阶锥放缩处理,构建综合能源系统日前调度概率最优能量流模型;文献[15]运用增量分段线性化、二阶锥松弛方法分别对配网系统的非线性天然气潮流、电力系统潮流进行处理后,结合改进的遗传算法对气电配网系统规划模型进行求解;文献[16]运用二阶锥松弛方法对配电网、配气网的潮流方程进行松弛,将综合能源配网规划问题其转化为可直接求解的混合整数二阶锥模型。需求侧响应能够提高电力系统的新能源消纳能力以及运行经济性,从而促进能源的高效利用,这在很多研究成果得到了证明[17-19]。近年来,随着能源互联的不断发展,冷、热、气、电等多种负荷形式的需求响应在综合能源系统的协调规划和
运行方面发挥了有效作用。文献[20]采用粒子群算法对电力负荷曲线进行优化,在此基础上建立气电联合系统优化运行模型;文献[21]在气电综合能源系统主网优化运行模型中引入价格型和替代型需求响应;文献[22]计及用户主/被动负荷平移行为,构建两阶段电−气−热综合能源系统两阶段日前经济调度模型;文献[23]在计及多类型负荷需求响应基础上,提出热电联供系统优化运行策略。
📚2 运行结果
部分代码:
SB = 10; % 基准功率 MVA
VB = 12.66; % 基准电压 kV
ZB = VB^2/SB; % 基准阻抗
IB = SB/(sqrt(3)*VB); % kA 可以不用
% 支路数据
% 线路号 、首节点、末节点、有功负荷、无功负荷、阻、抗、线路载流量
PDN_data = [
1 1 2 100 60 0.0922 0.047 10000
2 2 3 90 40 0.493 0.2511 10000
3 3 4 120 80 0.366 0.1864 10000
4 4 5 60 30 0.3811 0.1941 10000
5 5 6 60 20 0.819 0.707 10000
6 6 7 200 100 0.1872 0.6188 10000
7 7 8 200 100 1.7114 1.2351 10000
8 8 9 60 20 1.03 0.74 10000
9 9 10 60 20 1.044 0.74 10000
10 10 11 45 30 0.1966 0.065 10000
11 11 12 60 35 0.3744 0.1238 10000
12 12 13 60 35 1.468 1.155 10000
13 13 14 120 80 0.5416 0.7129 10000
14 14 15 60 10 0.591 0.526 10000
15 15 16 60 20 0.7463 0.545 10000
16 16 17 60 20 1.289 1.721 10000
17 17 18 90 40 0.732 0.574 10000
18 2 19 90 40 0.164 0.1565 10000
19 19 20 90 40 1.5042 1.3554 10000
20 20 21 90 40 0.4095 0.4784 10000
21 21 22 90 40 0.7089 0.9373 10000
22 3 23 90 50 0.4512 0.3083 10000
23 23 24 420 200 0.898 0.7091 10000
24 24 25 420 200 0.896 0.7011 10000
25 6 26 60 25 0.203 0.1034 10000
26 26 27 60 25 0.2842 0.1447 10000
27 27 28 60 20 1.059 0.9337 10000
28 28 29 120 70 0.8042 0.7006 10000
29 29 30 200 600 0.5075 0.2585 10000
30 30 31 150 70 0.9744 0.963 10000
31 31 32 210 100 0.3105 0.3619 10000
32 32 33 60 40 0.341 0.5302 10000
];
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]C. He, C. Dai, L. Wu and T. Liu, "Robust Network Hardening Strategy for Enhancing Resilience of Integrated Electricity and Natural Gas Distribution Systems Against Natural Disasters," in IEEE Transactions on Power Systems, vol. 33, no. 5, pp. 5787-5798, Sept. 2018, doi: 10.1109/TPWRS.2018.2820383.
[2]刘天琪,张琪,何川.考虑气电联合需求响应的气电综合能源配网系统协调优化运行[J].中国电机工程学报,2021,41(05):1664-1677.DOI:10.13334/j.0258-8013.pcsee.200385.