当前位置: 首页 > article >正文

深入Sentinel使用和源码分析

一、分布式系统遇到的问题

1、服务雪崩效应

在分布式系统中,由于网络原因或自身的原因,服务一般无法保证 100% 可用。如果一个服务出现了问题,调用这个服务就会出现线程阻塞的情况,此时若有大量的请求涌入,就会出现多条线程阻塞等待,进而导致服务瘫痪。

由于服务与服务之间的依赖性,故障会传播,会对整个微服务系统造成灾难性的严重后果,这就是服务故障的 “雪崩效应” 。

image.png

雪崩发生的原因多种多样,最常见原因: 程序Bug,大流量请求,硬件故障,缓存击穿

  • 程序Bug: 比说我们以前我们支付模块增加一个功能,我们监听一个Rocketmq消息然后进行业务的处理,至于什么业务处理我们就不说了,上线后就报警了,我们的支付成功的订单直线下降,这是什么原因,我们查看日志有很多消费消息的日志,一直在打,我们马上回滚,然后排查问题,我们发现线上的功能消费设置的是CONSUME_FROM_FIRST_OFFSET 这个是一个新的订阅组第一次启动从队列的最前位置开始消费,后续再启动接着上次消费的进度开始消费,而我们监听的消息是已经存在的,所以里面存在了很多的消息,为此消费端一直消费对应的消息,导致一直运行,从而影响了支付的功能。我们改为CONSUME_FROM_LAST_OFFSET【一个新的订阅组第一次启动从队列的最后位置开始消费后续再启动接着上次消费的进度开始消费】。
  • 大流量请求:在秒杀和大促开始前,如果准备不充分,瞬间大量请求会造成服务提供者的不可用。
  • 硬件故障:可能为硬件损坏造成的服务器主机宕机, 网络硬件故障造成的服务提供者的不可访问。
  • 缓存击穿:一般发生在缓存应用重启, 缓存失效时高并发,所有缓存被清空时,以及短时间内大量缓存失效时。大量的缓存不命中, 使请求直击后端,造成服务提供者超负荷运行,引起服务不可用。

我们无法完全杜绝雪崩源头的发生,只有做好足够的容错,保证在一个服务发生问 题,不会影响到其它服务的正常运行。也就是"雪落而不雪崩"。

二、常见容错方案

要防止雪崩的扩散,我们就要做好服务的容错,容错说白了就是保护自己不被猪队友拖垮的一些措施, 下面介绍常见的服务容错思路和组件

1、常见的容错思路

常见的容错思路有隔离、超时、限流、熔断、降级这几种,下面分别介绍一下。

1.1 隔离

大的方向我们可以进行物理隔离,比如说我们可以把用户实例分为好几个组,一个组为4台为核心服务提供,另一组是2台为非核心的组提供服务,这样就进行了物理隔离,如果我们进入某个实例内我们想,比如我们的RPC调用我们调用的请求都会先进入一个队列里面然后再消费,那一个出了问题,也会影响其他的服务调用,那我们为每个服务的调用都会创建一个队列,这样进行了队列隔离,同时我们我在后面设置一个单独的线程池进行线程池隔离,但是如果我们后面访问的下游如果没有隔离会有什么问题,是不是还会出现问题,比如我们后面进行访问的时候都是一个数据库。

image.png

image.png

1.1 超时

在上游服务调用下游服务的时候,上游服务设置一个最大响应时间,如果超过这个时间,下游未作出反应,上游服务就断开请求,释放掉线程。

1.2 限流

限制请求核心服务提供者的流量,使大流量拦截在核心服务之外,这样可以更好的保证核心服务提供者不出问题,对于一些出问题的服务可以限制流量访问。

  • 计数器固定窗口算法
  • 计数器滑动窗口算法
  • 漏桶算法
  • 令牌桶算法

1.3 熔断

在互联网系统中,当下游服务因访问压力过大而响应变慢或失败,上游服务为了保护系统整体的可用性,可以暂时切断对下游服务的调用。

这种牺牲局部,保全整体的措施就叫做熔断。

服务熔断一般有三种状态:

  • 熔断关闭状态(Closed)

    服务没有故障时,熔断器所处的状态,对调用方的调用不做任何限制。

  • 熔断开启状态(Open)

    后续对该服务接口的调用不再经过网络,直接执行本地的fallback方法。

  • 半熔断状态(Half-Open)

    尝试恢复服务调用,允许有限的流量调用该服务,并监控调用成功率。如果成功率达到预期,则说明服务已恢复,进入熔断关闭状态;如果成功率仍旧很低,则重新进入熔断关闭状态。

    【现实世界的断路器大家肯定都很了解,断路器实时监控电路的情况,如果发现电路电流异常,就会跳闸,从而防止电路被烧毁。

    软件世界的断路器可以这样理解:实时监测应用,如果发现在一定时间内失败次数/失败率达到一定阈值,就“跳闸”,断路器打开——此时,请求直接返回,而不去调用原本调用的逻辑。跳闸一段时间后(例如10秒),断路器会进入半开状态,这是一个瞬间态,此时允许一次请求调用该调的逻辑,如果成功,则断路器关闭,应用正常调用;如果调用依然不成功,断路器继续回到打开状态,过段时间再进入半开状态尝试——通过”跳闸“,应用可以保护自己,而且避免浪费资源;而通过半开的设计,可实现应用的“自我修复“。

    所以,同样的道理,当依赖的服务有大量超时时,在让新的请求去访问根本没有意义,只会无畏的消耗现有资源。比如我们设置了超时时间为1s,如果短时间内有大量请求在1s内都得不到响应,就意味着这个服务出现了异常,此时就没有必要再让其他的请求去访问这个依赖了,这个时候就应该使用断路器避免资源浪费。】

    image.png

1.4 降级

所谓降级就是我们调用的服务异常超时等原因不能正常返回的情况下,我们返回一个缺省的值。

【由于降级经常和熔断一起使用,所以就会有熔断降级的说法。】

2、常见的容错组件

  • Hystrix

    Hystrix是由Netflix开源的一个延迟和容错库,用于隔离访问远程系统、服务或者第三方库,防止 级联失败,从而提升系统的可用性与容错性。

  • Resilience4J

    Resilicence4J一款非常轻量、简单,并且文档非常清晰、丰富的熔断工具,这也是Hystrix官方推 荐的替代产品。不仅如此,Resilicence4j还原生支持Spring Boot 1.x/2.x,而且监控也支持和prometheus等多款主流产品进行整合。

  • Sentinel

    Sentinel 是阿里巴巴开源的一款断路器实现,本身在阿里内部已经被大规模采用,非常稳定。

下面是三个组件在各方面的对比:

Sentinel Hystrix resilience4j
隔离策略 信号量隔离(并发线程数限流) 线程池隔离/信号量隔离 信号量隔离
熔断降级策略 基于慢调用比例、异常比例、异常数 基于异常比例 基于异常比例、响应时间
实时统计实现 滑动窗口(LeapArray) 滑动窗口(基于 RxJava) Ring Bit Buffer
动态规则配置 支持近十种动态数据源 支持多种数据源 有限支持
扩展性 多个扩展点 插件的形式 接口的形式
基于注解的支持 支持 支持 支持
单机限流 基于 QPS,支持基于调用关系的限流 有限的支持 Rate Limiter
集群流控 支持 不支持 不支持
流量整形 支持预热模式与匀速排队控制效果 不支持 简单的 Rate Limiter 模式
系统自适应保护 支持 不支持 不支持
热点识别/防护 支持 不支持 不支持
多语言支持 Java/Go/C++ Java Java
Service Mesh 支持 支持 Envoy/Istio 不支持 不支持
控制台 <font color=“red”>提供开箱即用的控制台,可配置规则、实时监控、机器发现等</font> <font color=“red”>简单的监控查看</font> <font color=“red”>不提供控制台,可对接其它监控系统</font>

三、sentinel基本操作

1、 什么是Sentinel

Sentinel (分布式系统的流量防卫兵) 是阿里开源的一套用于服务容错的综合性解决方案。它以流量为切入点, 从流量控制、熔断降级、系统负载保护等多个维度来保护服务的稳定性。

Sentinel 具有以下特征:

  • 丰富的应用场景:Sentinel承接了阿里巴巴近 10 年的双十一大促流量的核心场景, 例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。
  • 完备的实时监控:Sentinel提供了实时的监控功能。通过控制台可以看到接入应用的单台机器秒级数据, 甚至 500 台以下规模的集群的汇总运行情况。
  • 广泛的开源生态:Sentinel提供开箱即用的与其它开源框架/库的整合模块, 例如与 Spring Cloud、Dubbo、gRPC 的整合。只需要引入相应的依赖并进行简单的配置即可快速地接入Sentinel。
  • 完善的 SPI 扩展点:Sentinel提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。

Sentinel 分为两个部分:

  • 核心库(Java 客户端)不依赖任何框架/库,能够运行于所有Java 运行时环境,同时对Dubbo/Spring Cloud 等框架也有较好的支持。
  • 控制台(Dashboard)基于Spring Boot开发,打包后可以直接运行,不需要额外的Tomcat等应用容器。

2、基本概念

  • 资源

    资源就是Sentinel要保护的东西

    资源是 Sentinel 的关键概念。它可以是 Java 应用程序中的任何内容,例如,由应用程序提供的服务,或由应用程序调用的其它应用提供的服务,甚至可以是一段代码。

  • 规则

    规则就是用来定义如何进行保护资源的

    围绕资源的实时状态设定的规则,可以包括流量控制规则、熔断降级规则以及系统保护规则。所有规则可以动态实时调整

3、Sentinel 功能和设计理念

Sentinel的主要功能就是容错,主要体现为下面这三个:

3.1 流量控制(上游)

流量控制在网络传输中是一个常用的概念,它用于调整网络包的数据。任意时间到来的请求往往是随机不可控的,而系统的处理能力是有限的。我们需要根据系统的处理能力对流量进行控制。

image.png

Sentinel作为一个调配器,可以根据需要把随机的请求调整成合适的形状。

3.2 熔断降级(下游)

当检测到调用链路中某个资源出现不稳定的表现,例如请求响应时间长或异常比例升高的时候,则对这个资源的调用进行限制,让请求快速失败(或者其他处理方式),避免影响到其它的资源而导致级联故障。

image.png

image.png

5、Sentinel快速开始

在官方文档中,定义的Sentinel进行资源保护的几个步骤:

  1. 定义资源
  2. 定义规则
  3. 检验规则是否生效

5.1 抛出异常的方式定义资源

Entry entry = null;
// 务必保证 finally 会被执行
try {
   
  // 资源名可使用任意有业务语义的字符串,注意数目不能太多(超过 1K),超出几千请作为参数传入而不要直接作为资源名
  // EntryType 代表流量类型(inbound/outbound),其中系统规则只对 IN 类型的埋点生效
  entry = SphU.entry("自定义资源名");
  // 被保护的业务逻辑
  // do something...
} catch (BlockException ex) {
   
  // 资源访问阻止,被限流或被降级
  // 进行相应的处理操作
} catch (Exception ex) {
   
  // 若需要配置降级规则,需要通过这种方式记录业务异常
  Tracer.traceEntry(ex, entry);
} finally {
   
  // 务必保证 exit,务必保证每个 entry 与 exit 配对
  if (entry != null) {
   
    entry.exit();
  }
}

5.2 api的实现

<font color=“red”>msb-user项目中</font>

  • 引入依赖

    <dependency>
         <groupId>com.alibaba.csp</groupId>
         <artifactId>sentinel-core</artifactId>
         <version>1.8.1</version>
    </dependency>
    
  • 代码测试

@Slf4j
@RestController
public class ApiController {
   

    private static final String RESOURCE_NAME = "API-RESOURCE";
    @RequestMapping("getInfo")
    public String getInfo(){
   
        Entry entry = null;
        // 务必保证 finally 会被执行
        try {
   
            // 资源名可使用任意有业务语义的字符串,注意数目不能太多(超过 1K),超出几千请作为参数传入而不要直接作为资源名
            // EntryType 代表流量类型(inbound/outbound),其中系统规则只对 IN 类型的埋点生效
            entry = SphU.entry(RESOURCE_NAME);
            // 被保护的业务逻辑
            String str = "业务逻辑正常处理";
            log.info("====="+str+"=====");
            return str;
        } catch (BlockException ex) {
   
            // 资源访问阻止,被限流或被降级
            // 进行相应的处理操作
            log.info("Block...!");
            return "业务被限流了!";
        } catch (Exception ex) {
   
            // 若需要配置降级规则,需要通过这种方式记录业务异常
            Tracer.traceEntry(ex, entry);
        } finally {
   
            // 务必保证 exit,务必保证每个 entry 与 exit 配对
            if (entry != null) {
   
                entry.exit();
            }
        }
        return null;
    }

    /**
     * 定义流控规则
     */
    @PostConstruct
    private static void initFlowRules(){
   
        List<FlowRule> rules = new ArrayList<>();
        FlowRule rule = new FlowRule();
        //设置受保护的资源
        rule.setResource(RESOURCE_NAME);
        // 设置流控规则 QPS
        rule.setGrade(RuleConstant.FLOW_GRADE_QPS);
        // 设置受保护的资源阈值
        rule.setCount(1);
        rules.add(rule);
        // 加载配置好的规则
        FlowRuleManager.loadRules(rules);
    }
}

缺点:

  • 业务侵入性很强,需要在controller中写入非业务代码.
  • 配置不灵活 若需要添加新的受保护资源 需要手动添加 init方法来添加流控规则

5.3 注解方式定义资源

@SentinelResource注解实现

在定义了资源点之后,我们可以通过Dashboard来设置限流和降级策略来对资源点进行保护。同时还能 通过@SentinelResource来指定出现异常时的处理策略。

@SentinelResource用于定义资源,并提供可选的异常处理和fallback 配置项。其主要参数如下:

属性 作用
value 资源名称
entryType entry类型,标记流量的方向,取值IN/OUT,默认是OUT
blockHandler 处理BlockException的函数名称,函数要求:<br>1.必须是public<br/>2.返回类型 参数与原方法一致<br/>3.默认需和原方法在同一个类中。若希望使用其他类的函数,可配置blockHandlerClass,并指定blockHandlerClass里面的方法。
blockHandlerClass 存放blockHandler的类,对应的处理函数必须static修饰。
fallback 用于在抛出异常的时候提供fallback处理逻辑。fallback函数可以针对所有类型的异常(除了 exceptionsToIgnore 里面排除掉的异常类型)进行处理。函数要求:<br/>1.返回类型与原方法一致<br/>2.参数类型需要和原方法相匹配<br/>3.默认需和原方法在同一个类中。若希望使用其他类的函数,可配置fallbackClass ,并指定fallbackClass里面的方法。
fallbackClass 存放fallback的类。对应的处理函数必须static修饰。
defaultFallback 用于通用的 fallback 逻辑。默认fallback函数可以针对所有类型的异常进行处理。若同时配置了 fallback 和 defaultFallback,以fallback为准。函数要求:<br/>1.返回类型与原方法一致<br/>2.方法参数列表为空,或者有一个Throwable类型的参数。<br/>3.默认需要和原方法在同一个类中。若希望使用其他类的函数,可配置fallbackClass ,并指定 fallbackClass 里面的方法。
exceptionsToIgnore 指定排除掉哪些异常。排除的异常不会计入异常统计,也不会进入fallback逻辑,而是原样抛出。
exceptionsToTrace 需要trace的异常
  • 引入依赖

    <dependency>
        <groupId>com.alibaba.csp</groupId>
        <artifactId>sentinel-annotation-aspectj</artifactId>
        <version>1.8.1</version>
    </dependency>
    
  • 切面支持

    @Configuration
    public class SentinelAspectConfiguration {
         
    
        @Bean
        public SentinelResourceAspect sentinelResourceAspect() {
         
            return new SentinelResourceAspect();
        }
    }
    
  • 代码编写

    <font color=“red”>注意 这里面必须把以前的@PostConstruct导入的规则给注释掉,否则可能有冲突</font>

@Slf4j
@RestController
public class SentinelResourceController {
   

    //http://localhost:8001/testAspect/12
    @GetMapping("/testAspect/{id}")
    @SentinelResource(value = "testAspect",
            fallback = "fallback",fallbackClass = CommonException.class,
            blockHandler = "handleException",blockHandlerClass = CommonException.class
    )
    public Result testAspect(@PathVariable("id") Integer id){
   
        if(Integer.compare(id,Integer.parseInt("0")) == -1){
   
            throw new IllegalArgumentException("参数异常");
        }
        log.info("处理业务信息");
        return Result.ok("测试注解方式限流正常");
    }


    @PostConstruct
    private static void initFlowRules(){
   
        List<FlowRule> rules = new ArrayList<>();
        FlowRule rule = new FlowRule();
        //设置受保护的资源
        rule.setResource("testAspect");
        // 设置流控规则 QPS
        rule.setGrade(RuleConstant.FLOW_GRADE_QPS);
        // 设置受保护的资源阈值
        rule.setCount(1);
        rules.add(rule);
        // 加载配置好的规则
        FlowRuleManager.loadRules(rules);
    }
}

@Slf4j
public class CommonException {
   
    public static Result fallback(Integer id,Throwable e){
   
        log.error("出现业务异常");
        return Result.error(-1,"===业务异常==");
    }

    public static Result handleException(Integer id, BlockException e){
   
        log.error("触发限流机制");
        return Result.error(-2,"====触发限流机制==");
    }
}

这里的规则,需要我们自己编写,并且我们这里

5.4 整合springboot

  1. 引入依赖

    <dependency>
        <groupId>com.alibaba.cloud</groupId>
        <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
    </dependency>
    
  2. 修改配置

    spring: 
    	cloud:
    		sentinel: 
    			transport:
                    port: 9999 #跟控制台交流的端口,随意指定一个未使用的端口即可
                    dashboard: localhost:8080 # 指定控制台服务的地址
    

5.5 引入控制台

Sentinel 提供一个轻量级的控制台, 它提供机器发现、单机资源实时监控以及规则管理等功能。

第1步 下载jar包,解压到文件夹

https://github.com/alibaba/Sentinel/releases

第2步 启动控制台
# 直接使用jar命令启动项目(控制台本身是一个SpringBoot项目)
java -Dserver.port=8080 -Dcsp.sentinel.dashboard.server=localhost:8080 -Dproject.name=sentinel-dashboard -jar sentinel-dashboard-1.8.1.jar

把dashboard自己也当成一个资源加入到了dashboard中来进行监控,如果不想把dashboard自己加入控制台监控可以使用简单启动指令如下:

java -Dserver.port=8080 -jar sentinel-dashboard-1.8.1.jar
第4步: 访问控制台

用户可以通过如下参数进行配置:

-Dsentinel.dashboard.auth.username=sentinel 用于指定控制台的登录用户名为 sentinel;

-Dsentinel.dashboard.auth.password=123456 用于指定控制台的登录密码为 123456;如果省略这两个参数,默认用户和密码均为 sentinel;

-Dserver.servlet.session.timeout=7200 用于指定 Spring Boot 服务端 session 的过期时间,如 7200 表示 7200 秒;60m 表示 60 分钟,默认为 30 分钟;

访问http://localhost:8080/#/login ,默认用户名密码: sentinel/sentinel

<font color=“red”>Sentinel 会在客户端首次调用的时候进行初始化,开始向控制台发送心跳包,所以要确保客户端有访问量;</font>

image.png

补充:了解控制台的使用原理

Sentinel的控制台其实就是一个SpringBoot编写的程序。我们需要将我们的微服务程序注册到控制台上, 即在微服务中指定控制台的地址, 并且还要开启一个跟控制台传递数据的端口, 控制台也可以通过此端口调用微服务中的监控程序获取微服务的各种信息。

image.png

6、Sentinel规则(dashboard)

6.1 流控规则

流量控制(flow control),其原理是监控应用流量的 QPS 或并发线程数等指标,当达到指定的阈值时对流量进行控制,以避免被瞬时的流量高峰冲垮,从而保障应用的高可用性。一条限流规则主要由下面几个因素组成,我们可以组合这些元素来实现不同的限流效果:

Field 说明 默认值
resource 资源名,即限流规则的作用对象
count 限流阈值
grade 限流阈值类型(QPS 或并发线程数) QPS 模式
limitApp 流控针对的调用来源 default,代表不区分调用来源

http://www.kler.cn/a/574209.html

相关文章:

  • uniapp登录用户名在其他页面都能响应
  • 【FFmpeg之如何新增一个硬件解码器】
  • 华为OD机试-发现新词的数量(Java 2024 E卷 100分)
  • JAVA实现有趣的迷宫小游戏(附源码)
  • 【算法day2】无重复字符的最长子串 两数之和
  • YOLOv8改进SPFF-LSKA大核可分离核注意力机制
  • linux上配置免密登录
  • react中的fiber和初次渲染
  • 爬虫逆向:脱壳工具Youpk的使用详解
  • rust笔记12:rust的泛型
  • 计网学习———网络安全
  • Uniapp使用wxml-to-canvas进行动态页面转图片
  • Better-SQLite3 参数绑定详解
  • 多模态模型在做选择题时,如何设置Prompt,如何精准定位我们需要的选项
  • 装饰器模式:灵活扩展对象功能的利器
  • 如何高效使用 Mybatis-Plus 的批量操作
  • CDH下配置Flume进行配置传输日志文件
  • 深入探究C++并发编程:信号 异步 原子
  • muduo库源码分析:TcpConnection 类
  • better-sqlite3之exec方法