【LangChain】理论及应用实战(4):Memory
文章目录
- 一、对话Memory的实现
- 1.1 ConversationBufferMemory
- 二、几种其他的memory
- 2.1 ConversationBufferWindowMemory
- 2.2 ConversationTokenBufferMemory
- 2.3 ConversationSummaryBufferMemory
- 三、自定义Memory
- 四、为Chain增加Memory
- 4.1 在LLMChain上使用Memory
- 4.2 在ConversationChain上使用Memory
- 4.3 同一个Chain合并使用多个Memory
- 4.4 给一个多参数Chain增加Memory
- 参考资料
本文主要内容参考资料:AI Agent智能体开发,一步步教你搭建agent开发环境(需求分析、技术选型、技术分解)
与大模型进行多轮对话时,并不是前面的对话真的被大模型记住了,其实还是通过prompt来实现的。也就是在进行多轮对话时,在没有令牌限制或其他限制的情况下,会将前面的对话内容放进目前对话的prompt中。
langchain当中通过memory模块当中的一系列方法来实现多轮对话的记忆存储。
一、对话Memory的实现
1.1 ConversationBufferMemory
langchain中国最常见的一种对话Memory的实现就是基于 ConversationBufferMemory
方法。该方法会保存历史对话的所有内容,并存储在内容中,属于短时记忆。启用的方式是构建一个对话的ConversationChain
,将memory的方法作为参数传进去。还可以指定大模型、以及显示prompt的内容等。
示例代码:
import os
import openai
from langchain_community.chat_models import ChatOpenAI
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
os.environ["OPENAI_API_KEY"] = ''
openai.api_key = os.environ.get("OPENAI_API_KEY")
llm = ChatOpenAI(model_name = 'gpt-3.5-turbo',temperature = 0.0)
memory = ConversationBufferMemory() # 全部存储
conversation = ConversationChain(
llm = llm,
memory = memory,
verbose = True # 开启查看每次prompt内容
)
while 1:
content = input('user:')
print(conversation.predict(input=content))
输出如下:
user:Hi,my name is Rain.
> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Human: Hi,my name is Rain.
AI:
> Finished chain.
Hello Rain! It's nice to meet you. How can I assist you today?
user:what is 1+1?
> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Human: Hi,my name is Rain.
AI: Hello Rain! It's nice to meet you. How can I assist you today?
Human: what is 1+1?
AI:
> Finished chain.
1 + 1 equals 2. Is there anything else you would like to know?
user:what is my name?
> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Human: Hi,my name is Rain.
AI: Hello Rain! It's nice to meet you. How can I assist you today?
Human: what is 1+1?
AI: 1 + 1 equals 2. Is there anything else you would like to know?
Human: what is my name?
AI:
> Finished chain.
Your name is Rain.
二、几种其他的memory
2.1 ConversationBufferWindowMemory
这个方法不同于上文提到的方法,可以通过参数设置需要记忆的对话轮数
from langchain.memory import ConversationBufferWindowMemory
memory = ConversationBufferWindowMemory(k = 1) # K参数设置记忆的对话轮数
2.2 ConversationTokenBufferMemory
这个方法可以设置最大令牌上限,其实也是限制记忆的数量,毕竟大模型都是按Token数量收费的,当对话轮数很多时,每次对话记忆耗费的Token数量也会变得很大。指定llm参数是因为每种模型的token计算方式不同。
from langchain.memory import ConversationTokenBufferMemory
memory = ConversationTokenBufferMemory(llm=llm,max_token_limit=30) # 设置令牌上限
2.3 ConversationSummaryBufferMemory
这个方法会将之前所有的对话轮数根据你设置的令牌上限进行总结,保证新对话的prompt不会超过这个令牌上限,同时又能最大程度保存一些历史对话信息。
from langchain.memory import ConversationSummaryBufferMemory
memory = ConversationSummaryBufferMemory(llm=llm,max_token_limit=30)
通过总结摘要的方式,可以实现长对话的记忆功能。
三、自定义Memory
[待更新…]
四、为Chain增加Memory
4.1 在LLMChain上使用Memory
from langchain.chains import LLMChain
from langchain_ollama import OllamaLLM
from langchain.memory import ConversationBufferMemory
from langchain.prompts import PromptTemplate
# 自定义模版
template = """你是一个可以和人类对话的机器人.
{chat_history}
人类:{human_input}
机器人:
"""
prompt = PromptTemplate(
template=template,
input_variables={"chat_history", "human_input"}
)
memory = ConversationBufferMemory(
memory_key="chat_history" # 和prompt中的input_variables中的占位符对应
)
llm_model = OllamaLLM(model="llama3.1:8b")
chain = LLMChain(
llm=llm_model,
prompt=prompt,
memory=memory
)
result = chain.predict(human_input="你知道我叫什么名字吗")
print(result)
4.2 在ConversationChain上使用Memory
from langchain.chains import ConversationChain
from langchain.llms import OpenAI
from langchain.memory import ConversationBufferMemory
llm = OpenAI(
temperature=0,
)
memory = ConversationBufferMemory(
memory_key="history",
return_messages=True,
)
chain = ConversationChain(
llm=llm,
memory=memory,
verbose=True,
)
chain.predict(input="帮我做个一日游攻略")
4.3 同一个Chain合并使用多个Memory
[待更新…]
4.4 给一个多参数Chain增加Memory
[待更新…]
参考资料
AI Agent智能体开发,一步步教你搭建agent开发环境(需求分析、技术选型、技术分解)