当前位置: 首页 > article >正文

Python----数据可视化(Pyecharts三:绘图二:涟漪散点图,K线图,漏斗图,雷达图,词云图,地图,柱状图折线图组合,时间线轮廓图)

1、涟漪特效散点图

from pyecharts.globals import SymbolType
from pyecharts.charts import EffectScatter
from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.globals import ThemeType
# 绘制图表
es = (
    EffectScatter(init_opts=opts.InitOpts(theme=ThemeType.VINTAGE))
    .add_xaxis(Faker.choose())
    .add_yaxis('',Faker.values(),symbol=SymbolType.DIAMOND,symbol_size=20)
)
# 渲染图表
es.render_notebook()

2、K线图

from pyecharts.charts import Kline
from pyecharts import options as opts
data = [
    [2320.26, 2320.26, 2287.3, 2362.94],
    [2300, 2291.3, 2288.26, 2308.38],
    [2295.35, 2346.5, 2295.35, 2345.92],
    [2347.22, 2358.98, 2337.35, 2363.8],
    [2360.75, 2382.48, 2347.89, 2383.76],
    [2383.43, 2385.42, 2371.23, 2391.82],
    [2377.41, 2419.02, 2369.57, 2421.15],
    [2425.92, 2428.15, 2417.58, 2440.38],
    [2411, 2433.13, 2403.3, 2437.42],
    [2432.68, 2334.48, 2427.7, 2441.73],
    [2430.69, 2418.53, 2394.22, 2433.89],
    [2416.62, 2432.4, 2414.4, 2443.03],
    [2441.91, 2421.56, 2418.43, 2444.8],
    [2420.26, 2382.91, 2373.53, 2427.07],
    [2383.49, 2397.18, 2370.61, 2397.94],
    [2378.82, 2325.95, 2309.17, 2378.82],
    [2322.94, 2314.16, 2308.76, 2330.88],
    [2320.62, 2325.82, 2315.01, 2338.78],
    [2313.74, 2293.34, 2289.89, 2340.71],
    [2297.77, 2313.22, 2292.03, 2324.63],
    [2322.32, 2365.59, 2308.92, 2366.16],
    [2364.54, 2359.51, 2330.86, 2369.65],
    [2332.08, 2273.4, 2259.25, 2333.54],
    [2274.81, 2326.31, 2270.1, 2328.14],
    [2333.61, 2347.18, 2321.6, 2351.44],
    [2340.44, 2324.29, 2304.27, 2352.02],
    [2326.42, 2318.61, 2314.59, 2333.67],
    [2314.68, 2310.59, 2296.58, 2320.96],
    [2309.16, 2286.6, 2264.83, 2333.29],
    [2282.17, 2263.97, 2253.25, 2286.33],
    [2255.77, 2270.28, 2253.31, 2276.22],
]
# 绘制图表
kl = (
    Kline()
    .add_xaxis([f'2030/6/{i}' for i in range(1,len(data)+1)])
    .add_yaxis('',data)
)
# 渲染图表
kl.render_notebook()

3、漏斗图 

from pyecharts.charts import Funnel
from pyecharts.faker import Faker
from pyecharts import options as opts
fun = (
    Funnel()
    .add('',data_pair=[(k,v) for k,v in zip(Faker.choose(),Faker.values())],
         label_opts= opts.LabelOpts(formatter='{b}:{c}',position='inside'),
         sort_='ascending'
         )
)
fun.render_notebook()

4、雷达图 

from pyecharts.charts import Radar
from pyecharts import options as opts
#添加数据项
data1=[[98,100,89,89,97]]
data2 = [[100,89,79,67,61]]
#绘制雷达图
radar = (
    Radar()
    .add_schema(
        [
        opts.RadarIndicatorItem(name="语文",max_=100),
        opts.RadarIndicatorItem(name="数学",max_=100),
        opts.RadarIndicatorItem(name="化学",max_=100),
        opts.RadarIndicatorItem(name="历史",max_=100),
        opts.RadarIndicatorItem(name="地理",max_=100),
    ])
    .add('小明',data1,color=Faker.rand_color())
    .add('大虎',data2,color=Faker.rand_color())
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False),linestyle_opts=opts.LineStyleOpts(width=3))
)
radar.render_notebook()

5、词云图 

from pyecharts.charts import WordCloud
from pyecharts import options as opts
data = [ ['ThinkPad','15.7'], 
         ['联想','14.5'],
         ['惠普','14.4'], 
         ['华为','11.7'], 
         ['华硕','8.2'], 
         ['戴尔','8.1'], 
         ['Acer 宏碁','4.5'], 
         ['苹果','3.5'], 
         ['神舟','3.2'], 
         ['ROG','3.1'], 
         ['机械革命','2.4'], 
         ['msi 微星','1.8'], 
         ['外星人','1.5'], 
         ['微软','1.4'], 
         ['荣耀','1.2'], 
         ['雷神','1'], 
         ['三星','0.7'], 
         ['红米','0.6'], 
         ['机械师','0.5'], 
         ['小米','0.5'], 
         ['炫龙','0.4'], 
         ['雷蛇','0.2'], 
         ['壹号本','0.1'], 
         ['a 豆','0.1'],
         ['未来人类','0.1'], 
         ['技嘉','0.1'], 
         ['中柏','0.1'], 
         ['VAIO','0.1'], 
         ['火影','0.1'], 
         ['LG','0.1'], 
         ['松下','0'], 
         ['麦本本','0'], 
         ['吾空','0'], 
         ['长城','0'], 
         ['GPD','0'], 
         ['清华同方','0'], 
         ['神基','0'], 
         ['爱尔轩','0'], 
         ['酷比魔方','0'], 
         ['海尔','0'], 
         ['谷歌','0'], 
         ['台电','0'], 
         ['iru','0'], 
         ['攀升 IPASON','0'], 
         ['NEC','0'], 
         ['夏普','0'],
         ['京东京造','0'], 
         ['锡恩帝','0'], 
         ['皓勤','0'], 
         ['Intel','0']]
# 绘制指定图形
wd = (
    WordCloud()     # 初始化词云图表
    .add('',data,shape='star') 
)
# 渲染图表
wd.render_notebook()

6、地图

from pyecharts.charts import Map
from pyecharts import options as opts
from pyecharts.faker import Faker
map = (
    Map() # 初始化地图对象
    .add('商家A',[['北京市',100],['上海市',150],['太原市',99]],'china')  
    # 1. 数据的key一定要和地图上的名称相符
    # 2. 地图上没有的key尽量不要去用,很有可能显示不出来
)
# 渲染图表
map.render_notebook()

地图坐标图

from pyecharts.charts import Geo
from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.globals import ChartType
from pyecharts.globals import SymbolType
geo = (
    Geo()
    .add_schema()
    .add('',data_pair=[i for i in zip(Faker.provinces,Faker.values())],
         label_opts= opts.LabelOpts(is_show=False),
         type_=ChartType.EFFECT_SCATTER) # 填充数据
    .add('',[('北京','上海1'),('北京','广州'),('广州','上海')],
         type_=ChartType.LINES,      # 绘制成线
         linestyle_opts=opts.LineStyleOpts(curve=0.2),  # 设置线的平滑度
         effect_opts=opts.EffectOpts(symbol_size=6,symbol=SymbolType.ARROW,color='green'),
         color='green'
         )
)
# 渲染图表
geo.render_notebook()

7、柱状图折线图组合

from pyecharts.charts import Bar,Line
from pyecharts.globals import ThemeType
from pyecharts import options as opts
# 设置数据
x_value = [f'{i}月' for i in range(1,13)]
# 蒸发
evaporation = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]
# 降水
precipitation = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]
# 温度
temperature = [2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2]
# 柱状图
bar = (
    Bar()
    .add_xaxis(xaxis_data=x_value) # 设置x轴数据
    .add_yaxis('蒸发',evaporation)
    .add_yaxis('降水',precipitation)
    .set_global_opts(title_opts=opts.TitleOpts('组合图'),
                     yaxis_opts=opts.AxisOpts(name='水量',min_=0,max_=250,
                                              axislabel_opts=opts.LabelOpts(formatter='{value}ml')))
    .extend_axis(yaxis=opts.AxisOpts(
        name='温度',min_=0,max_=25,
        axislabel_opts=opts.LabelOpts(formatter='{value}℃')
        )) # 追加y轴数据
)
# 折线图
line = (
    Line()
    .add_xaxis(xaxis_data=x_value)
    .add_yaxis('温度',temperature,yaxis_index=1) # yaxis_index指定第几个y轴内容
)
# 混合2个图表
bar.overlap(line)
# 渲染图表
bar.render_notebook()

8、时间线轮播图

from pyecharts.charts import Timeline,Bar
from pyecharts.faker import Faker
# 绘制时间线图表
timeline = Timeline()
# 设置x轴数据
x_value = Faker.choose()
for year in range(2020,2031):
    bar = (
        Bar()
        .add_xaxis(x_value)
        .add_yaxis('商家A',Faker.values())
        .add_yaxis('商家B',Faker.values())
    )
    # 将图表增加到时间线中
    timeline.add(bar,f'{year}年')
# 渲染图表
timeline.render_notebook()


http://www.kler.cn/a/586843.html

相关文章:

  • Java方法继承、方法重载、方法覆盖总结
  • Hive SQL 精进系列: IF 函数的强大功能与高级应用
  • Qlik Sense New Install with Restore
  • 【PlatformIO】基于Arduino的ESP8266 锂电池电压、电量测试
  • 射频前端模块(FEM)的基本原理与架构:从组成到WiFi路由器的应用
  • 1、操作系统引论
  • C语言 | 二叉树打印效果,控制台打印
  • 【Git学习笔记】Git初识及其结构原理分析(一)
  • JavaScript性能优化的几个方面入手
  • matlab 谐波分析公式绘图
  • Three.js 实现云状特效
  • Global Mapper 多功能的GIS软件
  • Python 本地翻译库 googletrans
  • 华为机试牛客刷题之HJ5 进制转换
  • 「为爱发电」的硬核打开方式,涂鸦智能用AIoT引领智慧能源变革
  • The Rust Programming Language 学习 (五)
  • 人工智能技术与应用演讲(61页PPT)(文末有下载方式)
  • [已解决]UserWarning: __floordiv__ is deprecated
  • memcpy,memmove,strstr的模拟实现
  • 微店商品详情页的常见结构及爬虫解析方法