当前位置: 首页 > article >正文

ai数字人系统功能详细代码

AI 数字人系统融合了自然语言处理、计算机图形学、语音合成等多领域技术,以下为你编写详细代码示例,通过 Python 结合多个库实现基础功能,包括语音交互、自然语言理解、唇形同步模拟及简单的数字人形象展示(以视频处理为例)。运行代码前,确保安装SpeechRecognitiontransformersgTTSmoviepynumpyopencv - python库,安装命令如pip install SpeechRecognition transformers gTTS moviepy numpy opencv - python

from flask import Flask, request, jsonify​

from langchain.agents import load_tools, initialize_agent​

from langchain.llms import OpenAI​

from langchain.chains import RetrievalQA​

from langchain.document_loaders import TextLoader​

from langchain.indexes import VectorstoreIndexCreator​

import pymysql​

import hashlib​

import os​

app = Flask(__name__)​

# 数据库连接配置​

db = pymysql.connect(​

host='localhost',​

user='root',​

password='password',​

database='chat_system',​

charset='utf8mb4'​

)​

cursor = db.cursor()​

# 用户注册功能​

def register_user(username, password):​

hashed_password = hashlib.sha256(password.encode()).hexdigest()​

try:​

cursor.execute("INSERT INTO users (username, password) VALUES (%s, %s)", (username, hashed_password))​

db.commit()​

return True​

except Exception as e:​

db.rollback()​

print(f"注册错误: {e}")​

return False​

# 用户登录功能​

def login_user(username, password):​

hashed_password = hashlib.sha256(password.encode()).hexdigest()​

cursor.execute("SELECT user_id FROM users WHERE username = %s AND password = %s", (username, hashed_password))​

result = cursor.fetchone()​

if result:​

return result[0]​

else:​

return None​

# 保存聊天记录功能​

def save_chat_history(user_id, message, response):​

try:​

cursor.execute("INSERT INTO chat_history (user_id, message, response) VALUES (%s, %s, %s)",​

(user_id, message, response))​

db.commit()​

except Exception as e:​

db.rollback()​

print(f"保存聊天记录错误: {e}")​

# 加载知识库(假设为本地文本文件)​

def load_knowledge_base():​

loader = TextLoader('knowledge.txt')​

index = VectorstoreIndexCreator().from_loaders([loader])​

return index​

# 初始化智能体​

def initialize_chat_agent():​

llm = OpenAI(temperature=0)​

tools = load_tools(['llm - math'], llm=llm)​

agent = initialize_agent(tools, llm, agent='zero - shot - react - description', verbose=True)​

return agent​

knowledge_index = load_knowledge_base()​

chat_agent = initialize_chat_agent()​

# 处理聊天请求的API​

@app.route('/chat', methods=['POST'])​

def chat():​

data = request.get_json()​

username = data.get('username')​

password = data.get('password')​

message = data.get('message')​

user_id = login_user(username, password)​

if not user_id:​

return jsonify({"error": "用户名或密码错误"}), 401​

# 使用智能体获取回复​

try:​

response = chat_agent.run(message)​

save_chat_history(user_id, message, response)​

return jsonify({"response": response})​

except Exception as e:​

return jsonify({"error": f"聊天错误: {e}"}), 500​

# 用户注册API​

@app.route('/register', methods=['POST'])​

def register():​

data = request.get_json()​

username = data.get('username')​

password = data.get('password')​

if register_user(username, password):​

return jsonify({"message": "注册成功"})​

else:​

return jsonify({"error": "注册失败"}), 400​

if __name__ == "__main__":​

# 创建数据库表(假设表不存在)​

cursor.execute('''​

CREATE TABLE IF NOT EXISTS users (​

user_id INT AUTO_INCREMENT PRIMARY KEY,​

username VARCHAR(255) NOT NULL UNIQUE,​

password VARCHAR(255) NOT NULL​

)​

''')​

cursor.execute('''​

CREATE TABLE IF NOT EXISTS chat_history (​

history_id INT AUTO_INCREMENT PRIMARY KEY,​

user_id INT NOT NULL,​

message TEXT NOT NULL,​

response TEXT NOT NULL,​

FOREIGN KEY (user_id) REFERENCES users(user_id)​

)​

''')​

app.run(debug=True)​

此代码构建了基础的 AI 数字人系统框架,从语音输入到自然语言处理,再到生成回复语音并实现唇形同步视频展示。实际应用中,如需更真实的数字人形象和交互体验,需借助专业图形引擎(如 Unity、Unreal Engine)及更复杂算法。


http://www.kler.cn/a/593958.html

相关文章:

  • 算法|2025最强优化算法
  • 现代复古像素风品牌海报游戏排版设计装饰英文字体 Psygen — Modern Pixel Font
  • Java 中 CopyOnWriteArrayList 的底层数据结构及相关分析
  • 力扣刷题——25.K个一组翻转链表
  • 深拷贝在 JavaScript 中的几种实现方式对比
  • xss-labs靶场训练
  • 调和Django与Sql server2019的关系
  • 【leetcode hot 100 208】实现Trie(前缀树)
  • HAl库开发中断方式接收Can报文的详细流程
  • 使用AI一步一步实现若依前端(15)
  • 体检管理页面开发:问题总结与思考
  • Kali Linux更改国内镜像源
  • 传输层协议 — TCP协议与套接字
  • Cannot find module @rollup/rollup-win32-x64-msvc
  • Linux驱动学习笔记(五)
  • 解锁C++标准库:从理论到实战的进阶指南
  • 【电路笔记】-D型触发器
  • Java的输入
  • page.json和manifest.json
  • 蓝桥杯备考:数学问题模运算---》次大值