当前位置: 首页 > article >正文

【PyTorch基础】PyTorch还支持线性代数运算?PyTorch的内置线性代数运算示例

目录

引言

1. trace - 对角线元素之和(矩阵的迹)

2. diag - 提取对角线元素 

3. triu / tril - 上三角/下三角矩阵

4. mm / bmm - 矩阵乘法 / 批量矩阵乘法

5. addmm / addbmm / addmv / addr / baddbmm - 矩阵运算

6. t - 转置矩阵

7. dot / cross - 内积 / 外积

8. inverse - 求逆矩阵

9. svd - 奇异值分解

结语


引言

PyTorch 作为一个强大的深度学习框架,提供了丰富的线性代数功能,使得开发者能够高效地进行各种矩阵运算。通过使用 PyTorch 中的相关库,我们可以避免重复“造轮子”,从而专注于实现更高层次的算法和模型。本文将介绍几个常用的 PyTorch 中的线性代数功能,帮助您更轻松地进行矩阵操作,从而提升您的开发效率。

另外,若有进一步研究需求,可以参考官方文档

1. trace - 对角线元素之和(矩阵的迹)

# 1. trace - 对角线元素之和(矩阵的迹)
import torch

# 创建一个 3x3 矩阵
tensor = torch.tensor([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])
# 计算矩阵的迹
trace_value = torch.trace(tensor)
print(f"矩阵的迹: {trace_value}")

 

2. diag - 提取对角线元素 

# 2. diag - 提取对角线元素
# 提取对角线元素
diagonal_elements = torch.diag(tensor)
print(f"对角线元素: {diagonal_elements}")

 

3. triu / tril - 上三角/下三角矩阵

# 3. triu / tril - 上三角/下三角矩阵
# 创建一个 3x3 矩阵
tensor = torch.tensor([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])
# 获取上三角矩阵
upper_triangle = torch.triu(tensor)
print(f"上三角矩阵:\n{upper_triangle}")

# 获取下三角矩阵
lower_triangle = torch.tril(tensor)
print(f"下三角矩阵:\n{lower_triangle}")

 

4. mm / bmm - 矩阵乘法 / 批量矩阵乘法

# 4. mm / bmm - 矩阵乘法 / 批量矩阵乘法
# 创建两个 3x3 矩阵
A = torch.tensor([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])
B = torch.tensor([[9., 8., 7.], [6., 5., 4.], [3., 2., 1.]])
# 矩阵乘法
result_mm = torch.mm(A, B)
print(f"矩阵乘法结果:\n{result_mm}")

# 批量矩阵乘法 (batch matrix multiplication)
batch_A = torch.rand(10, 3, 3)  # 10 个 3x3 矩阵
batch_B = torch.rand(10, 3, 3)
result_bmm = torch.bmm(batch_A, batch_B)
print(f"批量矩阵乘法结果:\n{result_bmm[0]}")  # 显示第一个批次的结果

 

5. addmm / addbmm / addmv / addr / baddbmm - 矩阵运算

# 5. addmm / addbmm / addmv / addr / baddbmm - 矩阵运算
# 使用 addmm 函数,矩阵加法加乘法
C = torch.tensor([[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]])
result_addmm = torch.addmm(C, A, B)
print(f"addmm 矩阵加法加乘法结果:\n{result_addmm}")

# 使用 addbmm 批量矩阵运算
# 创建批量矩阵
batch_A = torch.rand(10, 3, 4)  # 10 个 3x4 矩阵
batch_B = torch.rand(10, 4, 3)  # 10 个 4x3 矩阵
batch_C = torch.rand(3, 3)

# 使用 addbmm 进行批量矩阵运算 C = A @ B + C
result_addbmm = torch.addbmm(batch_C, batch_A, batch_B)
print(f"addbmm 批量矩阵运算结果:\n{result_addbmm[0]}")  # 显示第一个批次的结果

 

6. t - 转置矩阵

# 6. t - 转置矩阵
# 创建一个 2x3 矩阵
tensor = torch.tensor([[1., 2., 3.], [4., 5., 6.]])
# 转置矩阵
transposed_tensor = tensor.t()
print(f"转置后的矩阵:\n{transposed_tensor}")

 

7. dot / cross - 内积 / 外积

# 7. dot / cross - 内积 / 外积
# 创建两个向量
vector1 = torch.tensor([1., 2., 3.])
vector2 = torch.tensor([4., 5., 6.])

# 计算内积
dot_product = torch.dot(vector1, vector2)
print(f"内积: {dot_product}")

# 计算外积
cross_product = torch.cross(vector1, vector2)
print(f"外积: {cross_product}")

 

8. inverse - 求逆矩阵

# 8. inverse - 求逆矩阵
# 创建一个 2x2 矩阵
matrix = torch.tensor([[4., 7.], [2., 6.]])
# 求矩阵的逆
inverse_matrix = torch.inverse(matrix)
print(f"矩阵的逆:\n{inverse_matrix}")

 

9. svd - 奇异值分解

# 9. svd - 奇异值分解
# 创建一个 3x3 矩阵
matrix = torch.tensor([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])
# 进行奇异值分解
U, S, V = torch.svd(matrix)
print(f"U 矩阵:\n{U}")
print(f"S 奇异值:\n{S}")
print(f"V 矩阵:\n{V}")

 


结语

在这篇博客中,我们探讨了如何使用 PyTorch 中的线性代数功能来简化矩阵操作。通过利用这些内置的高效函数,不仅可以节省时间和精力,还能减少潜在的错误,提升代码的可读性和可维护性。希望大家在使用 PyTorch 进行矩阵运算时,能够充分利用这些强大的工具,而不再需要自己重复实现基础功能。


http://www.kler.cn/a/594129.html

相关文章:

  • 网络安全威胁与防护措施(上)
  • kubernetes高级实战
  • 【C++网络编程】第1篇:网络编程基础概念
  • 多维array和多维视图std::mdspan
  • Android自动化测试终极指南:从单元到性能全覆盖!
  • 【QA】Qt中直接渲染和离屏渲染效率哪个高?
  • ZYNQ14 基于正点原子的iic时序的fpga程序实现
  • 一学就会:A*算法详细介绍(Python)
  • springboot+mysql增删改查
  • Java、Python、PHP、Go:网站开发语言全维度对比与选择指南
  • win10 c++ VsCode 配置PCL open3d并显示
  • 源代码防泄密和安全上外网的关联
  • 第一个Spring程序基于Spring6
  • 使用C#创建安装Windows服务程序
  • 蓝桥杯十天冲刺-day1(日期问题)
  • 软考笔记——程序设计语言基础知识
  • Git 回退操作详解:带示例的“小白”指南
  • 编译构建google R8源码
  • 谈谈最近AI在我工作生活中的深度应用
  • JVM常用概念之对象对齐