ChatTTS 开源文本转语音模型本地部署 API 使用和搭建 WebUI 界面
ChatTTS(Chat Text To Speech),专为对话场景设计的文本生成语音(TTS)模型,适用于大型语言模型(LLM)助手的对话任务,以及诸如对话式音频和视频介绍等应用。支持中文和英文,还可以穿插笑声、说话间的停顿、以及语气词等。
1 下载模型
通过git-lfs工具包下载:
sudo apt install git-lfs
下载文件:
git lfs install
git clone https://www.modelscope.cn/pzc163/chatTTS.git ChatTTS-Model
如果因网络不佳下载中断,可以通过以下命令在中断后继续下载:
git lfs pull
2 安装 ChatTTS 依赖包
下载ChatTTS官网GitHub源码:
git clone https://gitcode.com/2noise/ChatTTS.git ChatTTS
安装Python依赖包:
cd ChatTTS
pip install -r requirements.txt
torch需要使用2.2.2
3 ChatTTS 中文文本转音频文件
ChatTTS 官网的样例代码 API 可能会跑不起来。
ChatTTS-01.py
import ChatTTS
import torch
import torchaudio
# 下载的ChatTTS模型文件目录,请按照实际情况替换
MODEL_PATH = '/path/to/ChatTTS-Model'
# 初始化并加载模型,特别注意加载模型参数,官网样例代码已经过时
chat = ChatTTS.Chat()
chat.load_models(
vocos_config_path=f'{MODEL_PATH}/config/vocos.yaml',
vocos_ckpt_path=f'{MODEL_PATH}/asset/Vocos.pt',
gpt_config_path=f'{MODEL_PATH}/config/gpt.yaml',
gpt_ckpt_path=f'{MODEL_PATH}/asset/GPT.pt',
decoder_config_path=f'{MODEL_PATH}/config/decoder.yaml',
decoder_ckpt_path=f'{MODEL_PATH}/asset/Decoder.pt',
tokenizer_path=f'{MODEL_PATH}/asset/tokenizer.pt',
)
# 需要转化为音频的文本内容
text = '中文文本'
# 文本转为音频
wavs = chat.infer(text, use_decoder=True)
# 保存音频文件到本地文件(采样率为24000Hz)
torchaudio.save("./output/output-01.wav", torch.from_numpy(wavs[0]), 24000)
运行Python代码:python ChatTTS-01.py
也可以在文本转换成语音之后,直接播放语音内容:
from IPython.display import Audio
# 播放生成的音频(autoplay=True 代表自动播放)
Audio(wavs[0], rate=24000, autoplay=True)
4 搭建 WebUI 界面
4.1 安装 Python 依赖包
pip install omegaconf~=2.3.0 transformers~=4.41.1
pip install tqdm einops vector_quantize_pytorch vocos
pip install modelscope gradio
运行 Python 程序,即可看到可视化界面,可以随意输入文本来生成音频文件了。
ChatTTS-WebUI.py
import random
import ChatTTS
import gradio as gr
import numpy as np
import torch
from ChatTTS.infer.api import refine_text, infer_code
print('启动ChatTTS WebUI......')
# WebUI设置
WEB_HOST = '127.0.0.1'
WEB_PORT = 8089
MODEL_PATH = '/path/to/ChatTTS-Model'
chat = ChatTTS.Chat()
chat.load_models(
vocos_config_path=f'{MODEL_PATH}/config/vocos.yaml',
vocos_ckpt_path=f'{MODEL_PATH}/asset/Vocos.pt',
gpt_config_path=f'{MODEL_PATH}/config/gpt.yaml',
gpt_ckpt_path=f'{MODEL_PATH}/asset/GPT.pt',
decoder_config_path=f'{MODEL_PATH}/config/decoder.yaml',
decoder_ckpt_path=f'{MODEL_PATH}/asset/Decoder.pt',
tokenizer_path=f'{MODEL_PATH}/asset/tokenizer.pt',
)
def generate_seed():
new_seed = random.randint(1, 100000000)
return {
"__type__": "update",
"value": new_seed
}
def generate_audio(text, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag):
torch.manual_seed(audio_seed_input)
rand_spk = torch.randn(768)
params_infer_code = {
'spk_emb': rand_spk,
'temperature': temperature,
'top_P': top_P,
'top_K': top_K,
}
params_refine_text = {'prompt': '[oral_2][laugh_0][break_6]'}
torch.manual_seed(text_seed_input)
text_tokens = refine_text(chat.pretrain_models, text, **params_refine_text)['ids']
text_tokens = [i[i < chat.pretrain_models['tokenizer'].convert_tokens_to_ids('[break_0]')] for i in text_tokens]
text = chat.pretrain_models['tokenizer'].batch_decode(text_tokens)
# result = infer_code(chat.pretrain_models, text, **params_infer_code, return_hidden=True)
print(f'ChatTTS微调文本:{text}')
wav = chat.infer(text,
params_refine_text=params_refine_text,
params_infer_code=params_infer_code,
use_decoder=True,
skip_refine_text=True,
)
audio_data = np.array(wav[0]).flatten()
sample_rate = 24000
text_data = text[0] if isinstance(text, list) else text
return [(sample_rate, audio_data), text_data]
def main():
with gr.Blocks() as demo:
default_text = "文字"
text_input = gr.Textbox(label="输入文本", lines=4, placeholder="Please Input Text...", value=default_text)
with gr.Row():
refine_text_checkbox = gr.Checkbox(label="文本微调开关", value=True)
temperature_slider = gr.Slider(minimum=0.00001, maximum=1.0, step=0.00001, value=0.8, label="语音温度参数")
top_p_slider = gr.Slider(minimum=0.1, maximum=0.9, step=0.05, value=0.7, label="语音top_P采样参数")
top_k_slider = gr.Slider(minimum=1, maximum=20, step=1, value=20, label="语音top_K采样参数")
with gr.Row():
audio_seed_input = gr.Number(value=42, label="语音随机数")
generate_audio_seed = gr.Button("\U0001F3B2")
text_seed_input = gr.Number(value=42, label="文本随机数")
generate_text_seed = gr.Button("\U0001F3B2")
generate_button = gr.Button("文本生成语音")
text_output = gr.Textbox(label="微调文本", interactive=False)
audio_output = gr.Audio(label="语音")
generate_audio_seed.click(generate_seed,
inputs=[],
outputs=audio_seed_input)
generate_text_seed.click(generate_seed,
inputs=[],
outputs=text_seed_input)
generate_button.click(generate_audio,
inputs=[text_input, temperature_slider, top_p_slider, top_k_slider, audio_seed_input, text_seed_input, refine_text_checkbox],
outputs=[audio_output, text_output, ])
# 启动WebUI
demo.launch(server_name='127.0.0.1', server_port=8089, share=False, show_api=False, )
if __name__ == '__main__':
main()