rasa命令行介绍
rasa命令行介绍
命令 | 注释 |
---|---|
rasa init | 使用示例训练数据、操作和配置文件创建新项目。 |
rasa train | 使用 NLU 数据和故事训练模型,将训练好的模型保存在 中。./models |
rasa interactive | 启动交互式学习会话,通过与助手聊天来创建新的训练数据。 |
rasa shell | 加载经过训练的模型,并允许您在命令行上与助手交谈。 |
rasa run | 使用已训练的模型启动服务器。 |
rasa run actions | 使用 Rasa SDK 启动操作服务器。 |
rasa visualize | 生成故事的可视化表示形式。 |
rasa test | 在以test_ 开头的任何文件上测试经过训练的 Rasa 模型。 |
rasa data split nlu | 对 NLU 训练数据执行 80/20 拆分。 |
rasa data convert | 在不同格式之间转换训练数据。 |
rasa data migrate | 将 2.0 域迁移到 3.0 格式。 |
rasa data validate | 检查域、NLU 和会话数据是否存在不一致。 |
rasa export | 将对话从跟踪器存储导出到事件代理。 |
rasa evaluate markers | 从现有跟踪器存储中提取标记。 |
rasa -h | 显示所有可用的命令。 |
rasa init
它创建以下文件:
.
├── actions
│ ├── __init__.py
│ └── actions.py
├── config.yml
├── credentials.yml
├── data
│ ├── nlu.yml
│ └── stories.yml
├── domain.yml
├── endpoints.yml
├── models
│ └── <timestamp>.tar.gz
└── tests
└── test_stories.yml
它会询问您是否要使用此数据训练初始模型。 如果回答“否”,则目录将为空。models
任何默认的 CLI 命令都需要此项目设置,因此这是最好的开始方式。您可以运行rasa train
rasa shell
rasa test
,无需任何其他配置。
rasa train
该命令可训练 Rasa 模型
如果您的目录中有现有模型(默认情况下在models/
下),则仅模型中已更改的部分将被重新训练。例如,如果您编辑您的 NLU 训练数据仅此而已,只会训练 NLU 部分。
如果要单独训练 NLU 或对话模型,可以运行 rasa train nlu
或rasa train core
。如果仅提供其中一个的训练数据 默认情况下,这些rasa train
命令将回退到这些命令之一。
rasa train
默认情况下,将训练好的模型存储在 定义的目录中。 默认情况下--out
, models/
模型的名称为<timestamp>.tar.gz
。如果要以不同的方式命名模型, 您可以使用--fixed-model-name
标志指定名称。
以下参数可用于配置训练过程:
usage: rasa train [-h] [-v] [-vv] [--quiet]
[--logging-config-file LOGGING_CONFIG_FILE]
[--data DATA [DATA ...]] [-c CONFIG] [-d DOMAIN] [--out OUT]
[--dry-run] [--augmentation AUGMENTATION] [--debug-plots]
[--num-threads NUM_THREADS]
[--fixed-model-name FIXED_MODEL_NAME] [--persist-nlu-data]
[--force] [--finetune [FINETUNE]]
[--epoch-fraction EPOCH_FRACTION] [--endpoints ENDPOINTS]
{core,nlu} ...
positional arguments:
{core,nlu}
core Trains a Rasa Core model using your stories.
nlu Trains a Rasa NLU model using your NLU data.
options:
-h, --help show this help message and exit
--data DATA [DATA ...]
Paths to the Core and NLU data files. (default:
['data'])
-c CONFIG, --config CONFIG
The policy and NLU pipeline configuration of your bot.
(default: config.yml)
-d DOMAIN, --domain DOMAIN
Domain specification. This can be a single YAML file,
or a directory that contains several files with domain
specifications in it. The content of these files will
be read and merged together. (default: domain.yml)
--out OUT Directory where your models should be stored.
(default: models)
--dry-run If enabled, no actual training will be performed.
Instead, it will be determined whether a model should
be re-trained and this information will be printed as
the output. The return code is a 4-bit bitmask that
can also be used to determine what exactly needs to be
retrained: - 0 means that no extensive training is
required (note that the responses still might require
updating by running 'rasa train'). - 1 means the model
needs to be retrained - 8 means the training was
forced (--force argument is specified) (default:
False)
--augmentation AUGMENTATION
How much data augmentation to use during training.
(default: 50)
--debug-plots If enabled, will create plots showing checkpoints and
their connections between story blocks in a file
called `story_blocks_connections.html`. (default:
False)
--num-threads NUM_THREADS
Maximum amount of threads to use when training.
(default: None)
--fixed-model-name FIXED_MODEL_NAME
If set, the name of the model file/directory will be
set to the given name. (default: None)
--persist-nlu-data Persist the NLU training data in the saved model.
(default: False)
--force Force a model training even if the data has not
changed. (default: False)
--finetune [FINETUNE]
Fine-tune a previously trained model. If no model path
is provided, Rasa Open Source will try to finetune the
latest trained model from the model directory
specified via '--out'. (default: None)
--epoch-fraction EPOCH_FRACTION
Fraction of epochs which are currently specified in
the model configuration which should be used when
finetuning a model. (default: None)
--endpoints ENDPOINTS
Configuration file for the connectors as a yml file.
(default: endpoints.yml)
Python Logging Options:
You can control level of log messages printed. In addition to these
arguments, a more fine grained configuration can be achieved with
environment variables. See online documentation for more info.
-v, --verbose Be verbose. Sets logging level to INFO. (default:
None)
-vv, --debug Print lots of debugging statements. Sets logging level
to DEBUG. (default: None)
--quiet Be quiet! Sets logging level to WARNING. (default:
None)
--logging-config-file LOGGING_CONFIG_FILE
If set, the name of the logging configuration file
will be set to the given name. (default: None)
rasa interactive
启动交互式学习会话
这将首先训练模型,然后启动交互式 shell 会话。 然后,您可以在与助手交谈时更正助手的预测。 如果 UnexpecTEDIntentPolicy
包含在管道中,action_unlikely_intent
可以在任何对话轮次触发。随后,将显示以下消息:
The bot wants to run 'action_unlikely_intent' to indicate that the last user message was unexpected
at this point in the conversation. Check out UnexpecTEDIntentPolicy docs to learn more.
如消息所述,这表明您已探索对话路径 根据当前的培训故事集,这是出乎意料的,因此添加了这个 建议使用培训故事的路径。与其他机器人操作一样,您可以选择确认或拒绝运行此操作。
如果使用--model
参数提供经过训练的模型,则会跳过训练 并且将改为加载该模型。
在互动学习过程中,Rasa将绘制当前对话 以及来自训练数据的一些类似对话来帮助您 跟踪您的位置。您可以查看可视化效果 在 http://localhost:5005/visualization.html 一旦会话开始。生成此图可能需要一些时间。 要跳过可视化效果,请运行 rasa interactive --skip-visualization
以下参数可用于配置交互式学习会话:
usage: rasa interactive [-h] [-v] [-vv] [--quiet]
[--logging-config-file LOGGING_CONFIG_FILE] [--e2e]
[-p PORT] [-m MODEL] [--data DATA [DATA ...]]
[--skip-visualization]
[--conversation-id CONVERSATION_ID]
[--endpoints ENDPOINTS] [-c CONFIG] [-d DOMAIN]
[--out OUT] [--augmentation AUGMENTATION]
[--debug-plots] [--finetune [FINETUNE]]
[--epoch-fraction EPOCH_FRACTION] [--force]
[--persist-nlu-data]
{core} ... [model-as-positional-argument]
positional arguments:
{core}
core Starts an interactive learning session model to create
new training data for a Rasa Core model by chatting.
Uses the 'RegexMessageHandler', i.e. `/<intent>` input
format.
model-as-positional-argument
Path to a trained Rasa model. If a directory is
specified, it will use the latest model in this
directory. (default: None)
options:
-h, --help show this help message and exit
--e2e Save story files in e2e format. In this format user
messages will be included in the stories. (default:
False)
-p PORT, --port PORT Port to run the server at. (default: 5005)
-m MODEL, --model MODEL
Path to a trained Rasa model. If a directory is
specified, it will use the latest model in this
directory. (default: None)
--data DATA [DATA ...]
Paths to the Core and NLU data files. (default:
['data'])
--skip-visualization Disable plotting the visualization during interactive
learning. (default: False)
--conversation-id CONVERSATION_ID
Specify the id of the conversation the messages are
in. Defaults to a UUID that will be randomly
generated. (default: 875709465b4e42399d8fd60d91038bc1)
--endpoints ENDPOINTS
Configuration file for the model server and the
connectors as a yml file. (default: endpoints.yml)
Python Logging Options:
You can control level of log messages printed. In addition to these
arguments, a more fine grained configuration can be achieved with
environment variables. See online documentation for more info.
-v, --verbose Be verbose. Sets logging level to INFO. (default:
None)
-vv, --debug Print lots of debugging statements. Sets logging level
to DEBUG. (default: None)
--quiet Be quiet! Sets logging level to WARNING. (default:
None)
--logging-config-file LOGGING_CONFIG_FILE
If set, the name of the logging configuration file
will be set to the given name. (default: None)
Train Arguments:
-c CONFIG, --config CONFIG
The policy and NLU pipeline configuration of your bot.
(default: config.yml)
-d DOMAIN, --domain DOMAIN
Domain specification. This can be a single YAML file,
or a directory that contains several files with domain
specifications in it. The content of these files will
be read and merged together. (default: domain.yml)
--out OUT Directory where your models should be stored.
(default: models)
--augmentation AUGMENTATION
How much data augmentation to use during training.
(default: 50)
--debug-plots If enabled, will create plots showing checkpoints and
their connections between story blocks in a file
called `story_blocks_connections.html`. (default:
False)
--finetune [FINETUNE]
Fine-tune a previously trained model. If no model path
is provided, Rasa Open Source will try to finetune the
latest trained model from the model directory
specified via '--out'. (default: None)
--epoch-fraction EPOCH_FRACTION
Fraction of epochs which are currently specified in
the model configuration which should be used when
finetuning a model. (default: None)
--force Force a model training even if the data has not
changed. (default: False)
--persist-nlu-data Persist the NLU training data in the saved model.
(default: False)
rasa shell
启动聊天会话
默认情况下,这将加载最新的训练模型。 您可以使用标志指定要加载的--model
其他模型。
如果使用仅 NLU 模型启动 shell,rasa shell
将输出为您输入的任何消息预测的意图和实体。
如果您已经训练了组合的Rasa模型,但只想查看您的模型 从文本中提取为意图和实体,您可以使用命令 rasa shell nlu
若要提高用于调试的日志记录级别,请运行:
rasa shell --debug
以下参数可用于配置命令。 大多数参数与 rasa run
重叠;有关这些参数的详细信息,请参阅以下部分。
请注意,--connector
参数将始终设置为 cmdline
运行rasa shell
时 。 这意味着您的凭证文件中的所有凭证都将被忽略, 如果您为--connector
参数提供自己的值,它也将被忽略。
usage: rasa shell [-h] [-v] [-vv] [--quiet]
[--logging-config-file LOGGING_CONFIG_FILE]
[--conversation-id CONVERSATION_ID] [-m MODEL]
[--log-file LOG_FILE] [--use-syslog]
[--syslog-address SYSLOG_ADDRESS]
[--syslog-port SYSLOG_PORT]
[--syslog-protocol SYSLOG_PROTOCOL] [--endpoints ENDPOINTS]
[-i INTERFACE] [-p PORT] [-t AUTH_TOKEN] [--cors [CORS ...]]
[--enable-api] [--response-timeout RESPONSE_TIMEOUT]
[--request-timeout REQUEST_TIMEOUT]
[--remote-storage REMOTE_STORAGE]
[--ssl-certificate SSL_CERTIFICATE]
[--ssl-keyfile SSL_KEYFILE] [--ssl-ca-file SSL_CA_FILE]
[--ssl-password SSL_PASSWORD] [--credentials CREDENTIALS]
[--connector CONNECTOR] [--jwt-secret JWT_SECRET]
[--jwt-method JWT_METHOD]
[--jwt-private-key JWT_PRIVATE_KEY]
{nlu} ... [model-as-positional-argument]
positional arguments:
{nlu}
nlu Interprets messages on the command line using your NLU
model.
model-as-positional-argument
Path to a trained Rasa model. If a directory is
specified, it will use the latest model in this
directory. (default: None)
options:
-h, --help show this help message and exit
--conversation-id CONVERSATION_ID
Set the conversation ID. (default:
ba0603d9db404c6db19051ffc3da5d6f)
-m MODEL, --model MODEL
Path to a trained Rasa model. If a directory is
specified, it will use the latest model in this
directory. (default: models)
--log-file LOG_FILE Store logs in specified file. (default: None)
--use-syslog Add syslog as a log handler (default: False)
--syslog-address SYSLOG_ADDRESS
Address of the syslog server. --use-sylog flag is
required (default: localhost)
--syslog-port SYSLOG_PORT
Port of the syslog server. --use-sylog flag is
required (default: 514)
--syslog-protocol SYSLOG_PROTOCOL
Protocol used with the syslog server. Can be UDP
(default) or TCP (default: UDP)
--endpoints ENDPOINTS
Configuration file for the model server and the
connectors as a yml file. (default: endpoints.yml)
Python Logging Options:
You can control level of log messages printed. In addition to these
arguments, a more fine grained configuration can be achieved with
environment variables. See online documentation for more info.
-v, --verbose Be verbose. Sets logging level to INFO. (default:
None)
-vv, --debug Print lots of debugging statements. Sets logging level
to DEBUG. (default: None)
--quiet Be quiet! Sets logging level to WARNING. (default:
None)
--logging-config-file LOGGING_CONFIG_FILE
If set, the name of the logging configuration file
will be set to the given name. (default: None)
Server Settings:
-i INTERFACE, --interface INTERFACE
Network interface to run the server on. (default:
0.0.0.0)
-p PORT, --port PORT Port to run the server at. (default: 5005)
-t AUTH_TOKEN, --auth-token AUTH_TOKEN
Enable token based authentication. Requests need to
provide the token to be accepted. (default: None)
--cors [CORS ...] Enable CORS for the passed origin. Use * to whitelist
all origins. (default: None)
--enable-api Start the web server API in addition to the input
channel. (default: False)
--response-timeout RESPONSE_TIMEOUT
Maximum time a response can take to process (sec).
(default: 3600)
--request-timeout REQUEST_TIMEOUT
Maximum time a request can take to process (sec).
(default: 300)
--remote-storage REMOTE_STORAGE
Set the remote location where your Rasa model is
stored, e.g. on AWS. (default: None)
--ssl-certificate SSL_CERTIFICATE
Set the SSL Certificate to create a TLS secured
server. (default: None)
--ssl-keyfile SSL_KEYFILE
Set the SSL Keyfile to create a TLS secured server.
(default: None)
--ssl-ca-file SSL_CA_FILE
If your SSL certificate needs to be verified, you can
specify the CA file using this parameter. (default:
None)
--ssl-password SSL_PASSWORD
If your ssl-keyfile is protected by a password, you
can specify it using this paramer. (default: None)
Channels:
--credentials CREDENTIALS
Authentication credentials for the connector as a yml
file. (default: None)
--connector CONNECTOR
Service to connect to. (default: None)
JWT Authentication:
--jwt-secret JWT_SECRET
Public key for asymmetric JWT methods or shared
secretfor symmetric methods. Please also make sure to
use --jwt-method to select the method of the
signature, otherwise this argument will be
ignored.Note that this key is meant for securing the
HTTP API. (default: None)
--jwt-method JWT_METHOD
Method used for the signature of the JWT
authentication payload. (default: HS256)
--jwt-private-key JWT_PRIVATE_KEY
A private key used for generating web tokens,
dependent upon which hashing algorithm is used. It
must be used together with --jwt-secret for providing
the public key. (default: None)
rasa run
启动运行已训练模型的服务器
默认情况下,Rasa 服务器使用 HTTP 进行通信。保护与SSL的通信 并在HTTPS上运行服务器,需要提供有效的证书和相应的私钥文件。可以将这些文件指定为rasa run
命令的一部分。 如果您在创建过程中使用密码加密了密钥文件, 您还需要添加--ssl-password
。
rasa run --ssl-certificate myssl.crt --ssl-keyfile myssl.key --ssl-password mypassword
默认情况下,Rasa 侦听每个可用的网络接口。您可以将其限制为特定的使用命令行选项-i
的网络接口。
rasa run -i 192.168.69.150
默认情况下,Rasa 将连接到凭证文件中指定的所有通道。 要连接到单个通道并忽略凭据文件中的所有其他通道, 在参数中指定通道的--connector
名称。
rasa run --connector rest
以下参数可用于配置 Rasa 服务器:
usage: rasa run [-h] [-v] [-vv] [--quiet]
[--logging-config-file LOGGING_CONFIG_FILE] [-m MODEL]
[--log-file LOG_FILE] [--use-syslog]
[--syslog-address SYSLOG_ADDRESS] [--syslog-port SYSLOG_PORT]
[--syslog-protocol SYSLOG_PROTOCOL] [--endpoints ENDPOINTS]
[-i INTERFACE] [-p PORT] [-t AUTH_TOKEN] [--cors [CORS ...]]
[--enable-api] [--response-timeout RESPONSE_TIMEOUT]
[--request-timeout REQUEST_TIMEOUT]
[--remote-storage REMOTE_STORAGE]
[--ssl-certificate SSL_CERTIFICATE]
[--ssl-keyfile SSL_KEYFILE] [--ssl-ca-file SSL_CA_FILE]
[--ssl-password SSL_PASSWORD] [--credentials CREDENTIALS]
[--connector CONNECTOR] [--jwt-secret JWT_SECRET]
[--jwt-method JWT_METHOD] [--jwt-private-key JWT_PRIVATE_KEY]
{actions} ... [model-as-positional-argument]
positional arguments:
{actions}
actions Runs the action server.
model-as-positional-argument
Path to a trained Rasa model. If a directory is
specified, it will use the latest model in this
directory. (default: None)
options:
-h, --help show this help message and exit
-m MODEL, --model MODEL
指定训练的RASA模型的路径。如果指定了目录,它将使用该目录中的最新model。
(default: models)
--log-file LOG_FILE 将日志存储在指定文件中。 (default: None)
--use-syslog Add syslog as a log handler (default: False)
--syslog-address SYSLOG_ADDRESS
Address of the syslog server. --use-sylog flag is
required (default: localhost)
--syslog-port SYSLOG_PORT
Port of the syslog server. --use-sylog flag is
required (default: 514)
--syslog-protocol SYSLOG_PROTOCOL
Protocol used with the syslog server. Can be UDP
(default) or TCP (default: UDP)
--endpoints ENDPOINTS
作为YML文件的模型服务器和连接器的配置文件 (default: endpoints.yml)
Python Logging Options:
You can control level of log messages printed. In addition to these
arguments, a more fine grained configuration can be achieved with
environment variables. See online documentation for more info.
-v, --verbose Be verbose. Sets logging level to INFO. (default:
None)
-vv, --debug Print lots of debugging statements. Sets logging level
to DEBUG. (default: None)
--quiet Be quiet! Sets logging level to WARNING. (default:
None)
--logging-config-file LOGGING_CONFIG_FILE
If set, the name of the logging configuration file
will be set to the given name. (default: None)
Server Settings:
-i INTERFACE, --interface INTERFACE
运行服务器的网络接口. (default:
0.0.0.0)
-p PORT, --port PORT 运行服务器的端口. (default: 5005)
-t AUTH_TOKEN, --auth-token AUTH_TOKEN
启用基于令牌的身份验证。请求需要提供令牌才能接受. (default: None)
--cors [CORS ...] 为传递的原点启用CORS(跨源资源共享)。使用*将所有来源列入白名单。
(default: None)
--enable-api 除输入通道外,还启动Web服务器API. (default: False)
--response-timeout RESPONSE_TIMEOUT
处理响应所需的最长时间 (sec).(default: 3600)
--request-timeout REQUEST_TIMEOUT
处理请求所需的最长时间 (sec).(default: 300)
--remote-storage REMOTE_STORAGE
设置存储您的RASA模型的远程位置,例如在AWS上. (default: None)
--ssl-certificate SSL_CERTIFICATE
Set the SSL Certificate to create a TLS secured
server. (default: None)
--ssl-keyfile SSL_KEYFILE
Set the SSL Keyfile to create a TLS secured server.
(default: None)
--ssl-ca-file SSL_CA_FILE
If your SSL certificate needs to be verified, you can
specify the CA file using this parameter. (default:
None)
--ssl-password SSL_PASSWORD
If your ssl-keyfile is protected by a password, you
can specify it using this paramer. (default: None)
Channels:
--credentials CREDENTIALS
Authentication credentials for the connector as a yml
file. (default: None)
--connector CONNECTOR
Service to connect to. (default: None)
JWT Authentication:
--jwt-secret JWT_SECRET
Public key for asymmetric JWT methods or shared
secretfor symmetric methods. Please also make sure to
use --jwt-method to select the method of the
signature, otherwise this argument will be
ignored.Note that this key is meant for securing the
HTTP API. (default: None)
--jwt-method JWT_METHOD
Method used for the signature of the JWT
authentication payload. (default: HS256)
--jwt-private-key JWT_PRIVATE_KEY
A private key used for generating web tokens,
dependent upon which hashing algorithm is used. It
must be used together with --jwt-secret for providing
the public key. (default: None)
rasa run actions
使用 Rasa SDK 启动操作服务器
以下参数可用于调整服务器设置:
usage: rasa run actions [-h] [-v] [-vv] [--quiet]
[--logging-config-file LOGGING_CONFIG_FILE] [-p PORT]
[--cors [CORS ...]] [--actions ACTIONS]
[--ssl-keyfile SSL_KEYFILE]
[--ssl-certificate SSL_CERTIFICATE]
[--ssl-password SSL_PASSWORD] [--auto-reload]
options:
-h, --help show this help message and exit
-p PORT, --port PORT 运行服务器的端口 (default: 5055)
--cors [CORS ...] 为传递的原点启用CORS。使用*将原点列入白名单 (default: None)
--actions ACTIONS 要加载的动作包的名称 (default: None)
--ssl-keyfile SSL_KEYFILE
Set the SSL certificate to create a TLS secured
server. (default: None)
--ssl-certificate SSL_CERTIFICATE
Set the SSL certificate to create a TLS secured
server. (default: None)
--ssl-password SSL_PASSWORD
If your ssl-keyfile is protected by a password, you
can specify it using this paramer. (default: None)
--auto-reload 启用包含操作子类的模块的自动重新加载. (default: False)
Python Logging Options:
You can control level of log messages printed. In addition to these
arguments, a more fine grained configuration can be achieved with
environment variables. See online documentation for more info.
-v, --verbose 要详细。将日志记录级别设置为INFO. (default:None)
-vv, --debug 打印大量调试语句。将日志记录级别设置为DEBUG. (default: None)
--quiet Be quiet! Sets logging level to WARNING. (default:
None)
--logging-config-file LOGGING_CONFIG_FILE
If set, the name of the logging configuration file
will be set to the given name. (default: None)
rasa visualize
在浏览器中生成故事图表
如果您的故事位于默认位置data/
以外的其他位置, 您可以使用标志--stories
指定它们的位置。
以下参数可用于配置此命令:
usage: rasa visualize [-h] [-v] [-vv] [--quiet]
[--logging-config-file LOGGING_CONFIG_FILE] [-d DOMAIN]
[-s STORIES] [--out OUT] [--max-history MAX_HISTORY]
[-u NLU]
options:
-h, --help show this help message and exit
-d DOMAIN, --domain DOMAIN
Domain规范。这可以是单个YAML文件,也可以是包含多个其中包含域规范的文件
的目录。这些文件的内容将被读取并合并在一起.
(default: domain.yml)
-s STORIES, --stories STORIES
包含training stories的文件或文件夹.
(default: data)
--out OUT Filename of the output path, e.g. 'graph.html'.
(default: graph.html)
--max-history MAX_HISTORY
合并输出图中的路径时要考虑的最大历史记录. (default: 2)
-u NLU, --nlu NLU 包含NLU数据的文件或文件夹,用于将示例消息插入图表. (default:
None)
Python Logging Options:
You can control level of log messages printed. In addition to these
arguments, a more fine grained configuration can be achieved with
environment variables. See online documentation for more info.
-v, --verbose Be verbose. Sets logging level to INFO. (default:
None)
-vv, --debug Print lots of debugging statements. Sets logging level
to DEBUG. (default: None)
--quiet Be quiet! Sets logging level to WARNING. (default:
None)
--logging-config-file LOGGING_CONFIG_FILE
If set, the name of the logging configuration file
will be set to the given name. (default: None)
rasa test
在测试数据上评估模型
rasa data split
创建 NLU 训练数据的训练-测试拆分
rasa data convert nlu
启动转换器
rasa data migrate
可以将 2.0 域自动迁移到 3.0 格式。
rasa data validate
验证数据。可以检查域、NLU 数据或故事数据是否存在错误和不一致之处。
rasa export
使用事件代理从跟踪器存储中导出事件
rasa evaluate markers
应用您在标记配置文件中定义的标记, 到存储在智能设备商店中的预先存在的对话框,并生成包含以下内容的文件.csv
提取的标记和汇总统计信息: