当前位置: 首页 > article >正文

three.js实现3d球体树状结构布局——树状结构的实现

目录

    • 系列文章
    • 安装依赖
    • 基本分析
    • 实体类
      • 场景
      • 相机
      • 渲染器
      • 辅助线
      • 环境光
      • 点光源
      • 球形几何体
      • 球形几何体的材质
      • 线几何体
      • 线几何体的材质
      • 物体
      • 文本
      • 轨道控制
    • 实现效果
    • 实现源码
    • 参考文档

系列文章

    three.js实现3d球体树状结构布局——添加入场、出场、点击放大等动画

安装依赖

npm i three three-spritetext three.meshline

    three-spritetext: 用来绘制文字。THREE.TextGeometry绘制文字存在模糊问题,而且转动camera时three-spritetext不需要手动处理让文字始终面向camera。
    three.meshline: 用来绘制线。THREE.LineBasicMaterial绘制线存在linewidth无效问题。
    下面是此次案例版本

"three": "^0.150.1"
"three-spritetext": "^1.8.0"
"three.meshline": "^1.4.0"
import * as THREE from "three";
import { OrbitControls } from "three/examples/jsm/controls/OrbitControls";
import SpriteText from 'three-spritetext';
import { MeshLine, MeshLineMaterial } from 'three.meshline'

基本分析

    如题three.js实现3d球体树状结构布局是我们此次案例要实现的目标,那我们需要的实体有球、线、文本,以及场景、相机、渲染器、辅助线、灯光等实体。下面我们按照实体一步步来实现。

实体类

场景

const createScene = () => {
    return new THREE.Scene();
}

相机

本例以透视投影相机PerspectiveCamera为例

const createPerspectiveCamera = ({ fov, aspect, near, far }) => {
    // fov — 摄像机视锥体垂直视野角度
    // aspect — 摄像机视锥体长宽比
    // near — 摄像机视锥体近端面
    // far — 摄像机视锥体远端面
    return new THREE.PerspectiveCamera(fov, aspect, near, far);
}

渲染器

const createWebGLRenderer = ({ dom, width, height }) => {
    // renderDom — dom
    // width — 渲染宽度 一般取domclientWidth
    // height — 渲染高度 一般取clientHeight
    if (width === undefined) {
        width = dom.clientWidth;
    }
    if (height === undefined) {
        height = dom.clientHeight;
    }
    const renderer = new THREE.WebGLRenderer();
    renderer.setSize(width, height);
    dom.appendChild(renderer.domElement);

    return renderer;
}

辅助线

const createAxesHelper = (length) => {
    return new THREE.AxesHelper(length)
}

环境光

const createAmbientLight = ({ color, intensity }) => {
    // color - (可选参数)) 十六进制光照颜色。 缺省值 0xffffff (白色)。
    // intensity - (可选参数) 光照强度。 缺省值 1。
    return new THREE.AmbientLight(color, intensity);
}

点光源

// 环境光
const createPointLight = ({ color, intensity, distance, decay }) => {
    // color - (可选参数)) 十六进制光照颜色。 缺省值 0xffffff (白色)。
    // intensity - (可选参数) 光照强度。 缺省值 1。
    // distance - 这个距离表示从光源到光照强度为0的位置。 当设置为0时,光永远不会消失(距离无穷大)。缺省值 0.
    // decay - 沿着光照距离的衰退量。缺省值 2。
    return new THREE.PointLight(color, intensity, distance, decay);
}

球形几何体

const createSphereGeometry = ({
    radius,
    widthSegments,
    heightSegments,
    phiStart,
    phiLength,
    thetaStart,
    thetaLength
}) => {
    /*
        radius — 球体半径,默认为1。
        widthSegments — 水平分段数(沿着经线分段),最小值为3,默认值为32。
        heightSegments — 垂直分段数(沿着纬线分段),最小值为2,默认值为16。
        phiStart — 指定水平(经线)起始角度,默认值为0。。
        phiLength — 指定水平(经线)扫描角度的大小,默认值为 Math.PI * 2。
        thetaStart — 指定垂直(纬线)起始角度,默认值为0。
        thetaLength — 指定垂直(纬线)扫描角度大小,默认值为 Math.PI。
    */
    return new THREE.SphereGeometry(
        radius,
        widthSegments,
        heightSegments,
        phiStart,
        phiLength,
        thetaStart,
        thetaLength
    );
}

球形几何体的材质

当然也可使用其他材质,本例使用MeshLambertMaterial

const createMeshLambertMaterial = (data) => {
    return new THREE.MeshLambertMaterial(data);
}

线几何体

const createLineGeometry = (points) => {
    const pointsVector3 = [];
    for (let i = 0; i < points.length; i++) {
        pointsVector3.push(new THREE.Vector3(points[i].x, points[i].y, points[i].z));
    }
    const geometry = new THREE.BufferGeometry().setFromPoints(pointsVector3);
    const line = new MeshLine();
    line.setGeometry(geometry);
    return line
}

线几何体的材质

const createMeshLineMaterial = (data) => {
    return new MeshLineMaterial({
        lineWidth: data.linewidth,
        color: data.color || "white",
        dashArray: data.dashArray || 0,
        transparent: true,
    })
}

物体

const createMesh = (geometry, materialBasic) => {
    return new THREE.Mesh(geometry, materialBasic);
}

文本

const createText = ({text, size, color}) => {
    let textClass = new SpriteText(text, size);
    textClass.color = color;
    return textClass
}

轨道控制

const createControl = (camera, dom) => {
    return new OrbitControls(camera, dom);
}

实现效果

在这里插入图片描述

实现源码

本案例以vue3编写

<script setup>
import { onMounted, ref, onBeforeUnmount, computed, reactive } from "vue";
import * as THREE from "three";
import { OrbitControls } from "three/examples/jsm/controls/OrbitControls";
import SpriteText from "three-spritetext";
import { MeshLine, MeshLineMaterial } from "three.meshline";

// 渲染dom
let treeDom = ref(null);
// 场景
const createScene = () => {
    return new THREE.Scene();
};
// 相机(透视投影相机)
const createPerspectiveCamera = ({ fov, aspect, near, far }) => {
    /* 
        fov — 摄像机视锥体垂直视野角度
        aspect — 摄像机视锥体长宽比
        near — 摄像机视锥体近端面
        far — 摄像机视锥体远端面
    */
    return new THREE.PerspectiveCamera(fov, aspect, near, far);
};
// 渲染器
const createWebGLRenderer = ({ dom, width, height }) => {
    /* 
        renderDom — dom
        width — 渲染宽度 一般取domclientWidth
        height — 渲染高度 一般取clientHeight
    */
    if (width === undefined) {
        width = dom.clientWidth;
    }
    if (height === undefined) {
        height = dom.clientHeight;
    }
    const renderer = new THREE.WebGLRenderer();
    renderer.setSize(width, height);
    dom.appendChild(renderer.domElement);

    return renderer;
};
// 辅助线
const createAxesHelper = (length) => {
    return new THREE.AxesHelper(length);
};
// 环境光
const createAmbientLight = ({ color, intensity }) => {
    // color - (可选参数)) 十六进制光照颜色。 缺省值 0xffffff (白色)。
    // intensity - (可选参数) 光照强度。 缺省值 1。
    return new THREE.AmbientLight(color, intensity);
};
// 点光
const createPointLight = ({ color, intensity, distance, decay }) => {
    /*
        color - (可选参数)) 十六进制光照颜色。 缺省值 0xffffff (白色)。
        intensity - (可选参数) 光照强度。 缺省值 1。
        distance - 这个距离表示从光源到光照强度为0的位置。 当设置为0时,光永远不会消失(距离无穷大)。缺省值 0.
        decay - 沿着光照距离的衰退量。缺省值 2。
    */
    return new THREE.PointLight(color, intensity, distance, decay);
};
// 球形几何体
const createSphereGeometry = ({
    radius,
    widthSegments,
    heightSegments,
    phiStart,
    phiLength,
    thetaStart,
    thetaLength,
}) => {
    /*
        radius — 球体半径,默认为1。
        widthSegments — 水平分段数(沿着经线分段),最小值为3,默认值为32。
        heightSegments — 垂直分段数(沿着纬线分段),最小值为2,默认值为16。
        phiStart — 指定水平(经线)起始角度,默认值为0。。
        phiLength — 指定水平(经线)扫描角度的大小,默认值为 Math.PI * 2。
        thetaStart — 指定垂直(纬线)起始角度,默认值为0。
        thetaLength — 指定垂直(纬线)扫描角度大小,默认值为 Math.PI。
    */
    return new THREE.SphereGeometry(
        radius,
        widthSegments,
        heightSegments,
        phiStart,
        phiLength,
        thetaStart,
        thetaLength
    );
};
// 球形几何体的材质
const createMeshLambertMaterial = (data) => {
    return new THREE.MeshLambertMaterial(data);
};
// 线几何体
const createLineGeometry = (points) => {
    const pointsVector3 = [];
    for (let i = 0; i < points.length; i++) {
        pointsVector3.push(
            new THREE.Vector3(points[i].x, points[i].y, points[i].z)
        );
    }
    const geometry = new THREE.BufferGeometry().setFromPoints(pointsVector3);
    const line = new MeshLine();
    line.setGeometry(geometry);
    return line;
};
// 线几何体的材质
const createMeshLineMaterial = (data) => {
    return new MeshLineMaterial({
        lineWidth: data.linewidth,
        color: data.color || "white",
        dashArray: data.dashArray || 0,
        transparent: true,
    });
};
// 物体
const createMesh = (geometry, materialBasic) => {
    return new THREE.Mesh(geometry, materialBasic);
};
// 文本
const createText = ({ text, size, color }) => {
    let textClass = new SpriteText(text, size);
    textClass.color = color;
    return textClass;
};
// 轨道控制
const createControl = (camera, dom) => {
    return new OrbitControls(camera, dom);
};

// 3d树布局算法 灵感来源 梯形/三角形转换为圆锥
const computedDataWeight = (data) => {
    let weight = 0;
    for (let i = 0; i < data.length; i++) {
        let item = data[i];
        if (item?.children?.length) {
            item.weight = computedDataWeight(item.children);
            weight += item.weight;
        } else {
            item.weight = 1;
            weight += 1;
        }
    }
    return weight;
};
const computedArcRArr = (data, pointInterval) => {
    let ArcRArr = [];
    let ArcData = [];
    let ArcWeight = [];
    formatTreeToArcData(data, ArcData);

    for (let i = 0; i < ArcData.length; i++) {
        let item = ArcData[i];
        let weight = 0;
        for (let j = 0; j < item.length; j++) {
            weight += item[j].weight;
        }
        ArcWeight.push(weight);
    }
    let R = computedArcR(pointInterval, ArcWeight[0]);

    // 半径算法
    for (let i = 0; i < ArcData.length; i++) {
        let item = ArcData[i];
        if (ArcWeight[i] < ArcWeight[0]) {
            // 不是完全层
            ArcRArr.push(R);
        } else {
            if (item.length > 1) {
                // 完全层
                let DValue = 0;
                item.forEach((weight) => {
                    DValue += Math.floor(weight.weight / 2);
                });
                ArcRArr.push(((ArcWeight[i] - DValue) / ArcWeight[i]) * R);
            } else {
                ArcRArr.push(0);
            }
        }
    }
    return { ArcRArr, R };
};
const formatTreeToArcData = (data, ArcData, deep = 0) => {
    data.forEach((element) => {
        if (!ArcData[deep]) {
            ArcData[deep] = [];
        }
        ArcData[deep].push({
            label: element.label,
            point_uuid: element.point_uuid,
            weight: element.weight,
        });
        if (element?.children?.length) {
            formatTreeToArcData(element?.children, ArcData, deep + 1);
        }
    });
};
const computedArcR = (pointInterval, points) => {
    if (points === 1) {
        return pointInterval * 2;
    }
    let arcR =
        pointInterval /
        2 /
        Math.cos((Math.PI / 180) * (((points - 2) * 180) / points / 2));
    if (arcR < pointInterval) {
        arcR = pointInterval * 2;
    }
    return arcR;
};
const computedTreeStyleAuto = (style, ArcRArr, R) => {
    if (style.yr === "auto") {
        style.yr = ArcRArr.length === 1 ? R : R / (ArcRArr.length - 1);
    }
    style.startPositionY =
        ((ArcRArr.length - 1) / 2) * style.yr + style.centerXYZ[1];
};
const computedPointPosition = (
    data,
    style,
    ArcRArr,
    startAngle = 0,
    endAngle = Math.PI * 2,
    deep = 0
) => {
    let totalWight = 0;
    for (let i = 0; i < data.length; i++) {
        totalWight += data[i].weight;
    }
    let AngleScope = endAngle - startAngle;
    let curAngle = startAngle;
    for (let i = 0; i < data.length; i++) {
        let item = data[i];
        let ratioAngle = (item.weight / totalWight) * AngleScope;
        item.position = {
            x:
                Math.sin(curAngle + ratioAngle / 2) * ArcRArr[deep] +
                style.centerXYZ[0],
            y:
                style.startPositionY -
                deep * (style.yr || 0) +
                style.centerXYZ[1],
            z:
                Math.cos(curAngle + ratioAngle / 2) * ArcRArr[deep] +
                style.centerXYZ[2],
        };
        if (item?.children?.length) {
            computedPointPosition(
                item?.children,
                style,
                ArcRArr,
                curAngle,
                curAngle + ratioAngle,
                deep + 1
            );
        }
        curAngle += ratioAngle;
    }
};

// 计算camera初始位置
const computedCameraStyle = (style, dom, treeStyle, R) => {
    if (style.position === "auto") {
        style.position = {
            x: 0,
            y: treeStyle.yr * 1.5,
            z: R * 3,
        };
    }
    if (style.data === "auto") {
        style.data = {
            fov: 45,
            aspect: dom.clientWidth / dom.clientHeight,
            near: 0.1,
            far: R * R,
        };
    }
    if (style.lookAt === "auto") {
        style.lookAt = JSON.parse(JSON.stringify(treeStyle.centerXYZ));
    }
};

const treeStyle = {
    centerXYZ: [0, 0, 0],
    yr: "auto",
    pointInterval: 10,
};
const cameraStyle = {
    position: "auto",
    data: "auto",
    lookAt: "auto",
};
const sphereMeshStyle = {
    geometry: {
        radius: 1,
        widthSegments: 320,
        heightSegments: 160,
    },
    material: {
        color: "#ffffff",
        wireframe: false, //是否将几何体渲染为线框,默认值为false(即渲染为平面多边形)
    },
};
const lineMeshStyle = {
    material: {
        color: "#ffffff",
        linewidth: 0.2,
    },
};
const textMeshStyle = {
    material: {
        size: 0.5,
        color: "#ffffff",
    },
};
let scene = null;
let camera = null;
let renderer = null;
const init = (rendererDom) => {
    let data = [
        {
            name: "顶点",
            children: [
                {
                    name: "0",
                    children: [
                        {
                            name: "0-0",
                            children: [
                                {
                                    name: "0-0-0",
                                },
                                {
                                    name: "0-0-1",
                                    children: [
                                        {
                                            name: "0-0-1-0",
                                        },
                                    ],
                                },
                                {
                                    name: "0-0-2",
                                },
                            ],
                        },
                        {
                            name: "0-1",
                        },
                        {
                            name: "0-2",
                            children: [
                                {
                                    name: "0-2-0",
                                },
                                {
                                    name: "0-2-1",
                                },
                            ],
                        },
                    ],
                },
                {
                    name: "1",
                    children: [
                        {
                            name: "1-0",
                        },
                        {
                            name: "1-1",
                        },
                        {
                            name: "1-2",
                            children: [
                                {
                                    name: "1-2-0",
                                },
                                {
                                    name: "1-2-1",
                                },
                            ],
                        },
                    ],
                },
                {
                    name: "2",
                    children: [
                        {
                            name: "2-0",
                            children: [
                                {
                                    name: "2-0-0",
                                },
                                {
                                    name: "2-0-1",
                                },
                                {
                                    name: "2-0-2",
                                },
                            ],
                        },
                        {
                            name: "2-1",
                            children: [
                                {
                                    name: "2-1-0",
                                },
                                {
                                    name: "2-1-1",
                                },
                            ],
                        },
                        {
                            name: "2-2",
                        },
                    ],
                },
            ]
        }
    ];

    computedDataWeight(data);
    let { ArcRArr, R } = computedArcRArr(data, treeStyle.pointInterval);
    computedTreeStyleAuto(treeStyle, ArcRArr, R);
    computedPointPosition(data, treeStyle, ArcRArr);

    computedCameraStyle(cameraStyle, rendererDom, treeStyle, R);

    scene = createScene();
    camera = createPerspectiveCamera(cameraStyle.data);
    camera.position.set(
        cameraStyle.position.x,
        cameraStyle.position.y,
        cameraStyle.position.z
    );
    camera.lookAt(
        cameraStyle.lookAt[0],
        cameraStyle.lookAt[1],
        cameraStyle.lookAt[2]
    );
    renderer = createWebGLRenderer({
        dom: rendererDom,
    });

    createControl(camera, rendererDom);

    const axes = createAxesHelper(R);
    scene.add(axes);

    const ambientLight = createAmbientLight({ color: "#fff", intensity: 0.2 });
    scene.add(ambientLight);

    const pointLight = createPointLight({ color: "#fff", intensity: 1 });
    pointLight.position.set(R * 10, R * 10, R * 10);
    scene.add(pointLight);

    const sphereGeometrys = [];
    const textGeometrys = [];
    const lineGeometrys = [];
    initGeometrys(data, sphereGeometrys, textGeometrys, lineGeometrys);
    scene.add(...sphereGeometrys);
    scene.add(...textGeometrys);
    scene.add(...lineGeometrys);

    render();
};
const initGeometrys = (data, sphereGeometrys, textGeometrys, lineGeometrys, parentPosition) => {
    for (let i = 0; i < data.length; i++) {
        let item = data[i];

        const geometry = createSphereGeometry(sphereMeshStyle.geometry);
        const material = createMeshLambertMaterial(sphereMeshStyle.material);
        const mesh = createMesh(geometry, material);
        mesh.position.set(item.position.x, item.position.y, item.position.z);
        sphereGeometrys.push(mesh);

        const text = createText({
            text: item.name,
            size: textMeshStyle.material.size,
            color: textMeshStyle.material.color,
        });
        text.position.x = item.position.x;
        text.position.y = item.position.y + sphereMeshStyle.geometry.radius * 2;
        text.position.z = item.position.z;
        textGeometrys.push(text);

        if (parentPosition) {
            const lineGeometry = createLineGeometry([
                parentPosition,
                { x: item.position.x, y: item.position.y, z: item.position.z },
            ]);
            const lineMaterial = createMeshLineMaterial(lineMeshStyle.material);
            const lineMesh = createMesh(lineGeometry, lineMaterial);
            lineGeometrys.push(lineMesh);
        }

        if (item?.children?.length) {
            initGeometrys(
                item.children,
                sphereGeometrys,
                textGeometrys,
                lineGeometrys,
                { x: item.position.x, y: item.position.y, z: item.position.z }
            );
        }
    }
};
// 渲染
const render = () => {
    //循环调用
    requestAnimationFrame(render);
    renderer.render(scene, camera);
};

onMounted(() => {
    let rendererDom = treeDom.value;
    init(rendererDom);
});
</script>

<template>
    <div class="tree-new-page">
        <div class="tree-new" ref="treeDom"></div>
    </div>
</template>

<style scoped lang="scss">
.tree-new-page {
    width: 100%;
    height: 100%;
    overflow: hidden;
    background-color: #000;
    position: relative;
    .tree-new {
        width: 100%;
        height: 100%;
    }
}
</style>

参考文档

three.js官方文档
three-spritetext文档
three.meshline文档


http://www.kler.cn/a/7498.html

相关文章:

  • 工作效率提升:使用Anaconda Prompt 创建虚拟环境总结
  • springmvc前端传参,后端接收
  • 【大数据基础】大数据概述
  • 『SQLite』解释执行(Explain)
  • React Native 项目 Error: EMFILE: too many open files, watch
  • 攻防世界 wtf.sh-150
  • GDOI 2023 游记
  • 【软件设计师07】程序设计语言与语言处理程序基础
  • UVM response_handler和get_response机制
  • 《C++开发技能树》004 语言类·指针和内存管理·glibc的内存实现ptmalloc
  • Vue3加载中(Spin)
  • 38--Django-项目实战-全栈开发-基于django+drf+vue+elementUI企业级项目开发流程-前台首页设计
  • 【vue】使用 el-upload+axis实现手动多文件上传的代码实现
  • 国内ChatGPt研发-中国chatGPT
  • VB execl函数 word文档 KBS
  • Canal增量数据订阅和消费——原理详解
  • ansible自动运维——看明白ansible.cfg配置文件
  • 【Linux】环境变量进程虚拟地址空间
  • MySQL 索引常见问题汇总,一次性梳理
  • React 组件的 children 数据使用
  • Android 10.0 系统framework发送悬浮通知的流程分析
  • 在CentOS 7 中安装Hive-1.2.2
  • 【一起撸个DL框架】1 绪论
  • FPGA纯verilog实现UDP通信,三速网自协商仲裁,动态ARP和Ping功能,提供工程源码和技术支持
  • 多线程-模拟抢红包,抽奖池
  • 设计模式-day03