当前位置: 首页 > article >正文

ChatGPT能够干翻谷歌吗?

目前大多数人对于ChatGPT的喜爱,主要源自于其强大的沟通能力,当我们向ChatGPT提出问题时,它不仅能够为我们提供结论,而且还能够与我们建立沟通,向ChatGPT提出任何问题,感觉都像是在与一个真实的人类进行交谈。

在ChatGPT发布前夕,谷歌人工智能实验室——谷歌大脑(Google Brain)的负责人Zoubin Ghahramani还曾公开表示:“聊天机器人并不是人们每天都能可靠地使用的东西。”然而Zoubin Ghahramani一定没有想到,“打脸”居然来的如此之快。就在其发表言论的几周之后,几乎全世界都在使用和讨论ChatGPT。

自11月底发布以来,ChatGPT迅速火遍全网,仅一周之内便拥有了超100万的用户量。如今,ChatGPT已经成为了有史以来全球用户数量最多的LLM(大型语言模型)聊天机器人。且由于ChatGPT在信息搜索模式上的创新,目前不少ChatGPT的拥护者为其披上了“谷歌杀手”的外衣,认为ChatGPT将能够在短时间内颠覆传统的信息搜索模式,进而取代谷歌在信息检索领域的统治地位。

那么,事实是否真如广大ChatGPT的粉丝所言?ChatGPT目前是否已具备挑战搜索引擎的能力;谷歌这位制霸搜索领域数十年的科技巨人又是否真的像ChatGPT粉丝们所认为的那样不堪一击呢?
在这里插入图片描述

1、ChatGPT的蜜糖与毒药

目前大多数人对于ChatGPT的喜爱,主要源自于其强大的沟通能力,当我们向ChatGPT提出问题时,它不仅能够为我们提供结论,而且还能够与我们建立沟通,向ChatGPT提出任何问题,感觉都像是在与一个真实的人类进行交谈。这的确是聊天机器人相比于搜索引擎的一大优势,以聊天形式进行答案的输出,远比搜索引擎一行行的网址要来的直接与亲切。

但是在硬币的另一面,ChatGPT在信息搜索方面却也存在着回答不可靠、易受外界影响以及伪造信息三大问题。

首先,ChatGPT的回答并不总是可靠的,其经常会在推理以及事实上犯错误。其次,ChatGPT容易受到外界信息的影响。在ChatGPT的独特特征中,最主要的便是学习能力,模型能够记住此前与其他用户的对话内容,并将其进行复述。这也导致了用户将能够非常轻易地干预ChatGPT对于问题的判断与回答。最近Stack Overflow论坛禁止了ChatGPT创建的所有答案,其理由便是由于ChatGPT对于大量问题都提供了从用户那里学习到的错误示例。

此外,在面对某些模糊问题或是论述性问题时,ChatGPT为了能够使其回答更具有信服力,似乎选择了对其生成的部分内容进行造假。例如当ChatGPT在引用各类社交媒体中专家对于特定问题的答复时,有时会对文本内容进行修改,或是将A的言论或事件匹配至B的名下。在这方面最典型的一个例子便是,当一位记者要求ChatGPT撰写一篇微软季度收益的文章时,ChatGPT为了增加文章的可信度,将微软首席执行官Satya Nadella的一次报价进行了伪造。

由此可见,虽然ChatGPT目前已经通过创新性的问答模式在信息检索方面取得了的一定影响力与大量的关注度,但在信息供给的准确性和可靠性方面,ChatGPT仍存在着一些明显的缺陷,这与搜索引擎的定位及目标显然是背道而驰的。且由于ChatGPT的设计初衷是用以对话式问答以及模拟人类的对话行为,ChatGPT在面对某些关键词检索场景时,虽然能够给出一定的解释,但却无法为用户提供足够有帮助的增量信息。因此,对于目前ChatGPT的定位与能力而言,想要挑战谷歌甚至于完全取代搜索引擎,显然还不是一件现实的事情。

2、谷歌的布局与取舍

反观谷歌,其实早在ChatGPT推出之前,这位巨人就已经参与了大量LLM项目的研发,其中最为著名的项目,便是几个月前被谷歌工程师称为“已具备人类感情”的LaMDA聊天机器人。那么,与目前大红大紫的ChatGPT相比,谷歌一直有意藏其锋芒的LaMDA的又表现如何呢?

作为谷歌现阶段最为成熟的对话式语言模型,LaMDA由1370亿个参数组成,并根据1.56TB的公开可用对话数据和web文档进行训练。另一方面,ChatGPT基于GPT-3.5架构,具有1750亿个参数,通过对人类书写文本的演示和由人类标注员在总体质量分数上所评定的样本进行有监督微调训练。

初看之下,LaMDA与ChatGPT在参数量及训练方式上的差别并不明显,但在具体的使用体验方面,二者却表现出了各自不同的特点。Scale AI的研究员Riley Goodside曾在一篇博客中表示:在面对相同问题时,ChatGPT往往能够给出较为明确地回应,但LaMDA所给出的回复表述形式更加友好,且更接近人类的语言模式。这可能与LaMDA接受对话训练直接相关,而ChatGPT则是在网络文本方面接受了更多的训练。

因此,尽管LaMDA自身也存在着一些漏洞,但在实际应用层面,如果谷歌希望使用LaMDA与ChatGPT进行竞争,二者之间的胜败还真犹未可知。而谷歌之所以至今还未对外发布LaMDA,也主要是出于对公司声誉的考虑。谷歌AI负责人Jeff Dean也曾在12月中旬的一次内部会议中声称:谷歌目前拥有做AI产品与技术的能力,但比起中小型公司,他们必须更加保守的做出一些决策。

在谈到谷歌AI时,Jeff Dean表示:聊天机器人很容易受到偏见和虚假信息的影响,而谷歌是一家拥有超过十亿用户的大企业,就更不容易摆脱这种影响。我们当然非常希望将这些技术使用到真正的产品当中,尤其是利用更加优秀的语言模型,但更重要的是,我们要做正确的事情。除此之外,值得我们注意的是,谷歌也于近期对内部团队的工作进行了调整,加强了对于AI技术及产品的研发支持。从以上的动作我们也不难看出,谷歌对于正面应对ChatGPT所带来的一些挑战还是非常有信心的。

3、融合或成新的机遇

归根结底,将聊天机器人与搜索引擎进行比较本就是一个伪命题。ChatGPT的价值在于,其能够模拟真人的“思考”行为,并通过交谈的方式运用其所学的知识回答我们的一些问题,或是完成具有创造性的简单的写作任务。而对搜索引擎而言,其主要职责则是为人们快速且精准地提供所需信息。其二者之间所存在的壁垒并非通过技术手段便能够实现有效弥合。

而对于二者未来的发展趋势,不少业内专家也给出了几乎趋于一致的看法,也就是ChatGPT类对话机器人将在未来与搜索引擎形成1+1>2的“共生”关系,成为搜索引擎新的入口。在这种全新模态下,人们或将能够通过语音或是文本的形式与搜索引擎进行直接的对话沟通,而搜索引擎也能够借助对话式机器人的理解与认知为人们从海量数据中快速总结出更具精度和符合偏好的搜索结果,帮助人们节省在信息搜索上的操作步骤,使人们整个搜索流程的效率得到极大地优化。

如此看来,尽管目前ChatGPT与谷歌表面上形成了一定的对立,但这种趋势更多的是出于对利益的考虑。相信随着时间的推移以及技术的持续演进,二者眼前的矛盾将会逐渐烟消云散。


http://www.kler.cn/a/7646.html

相关文章:

  • Angular生命周期
  • 【微服务】SpringBoot 整合Redis实现延时任务处理使用详解
  • 国产游戏崛起,燕云十六移动端1.9上线,ToDesk云电脑先开玩
  • API架构风格的深度解析与选择策略:SOAP、REST、GraphQL与RPC
  • Profinet转EtherNet/IP网关连接AB PLC的应用案例
  • 【MySQL】深度学习数据库开发技术:使用CC++语言访问数据库
  • 蓝桥杯备考
  • 【Python】如何实现Redis构造简易客户端(教程在这)
  • 学习 Python 之 Pygame 开发魂斗罗(十四)
  • Visual Studio Code 1.77 发布,扩展的 GitHub Copilot 集成
  • ArduPilot飞控之DIY-F450计划
  • JayDeBeApi对数据类型的支持
  • Linux- 系统随你玩之--玩出花活的命令浏览器上
  • 360周鸿祎离婚老婆能分得90亿,如果奶茶妹妹离婚会不会分走更多?
  • 7-6 莫比乌斯最大值isUsefulAlgorithm(2023郑州轻工业大学校赛
  • 【论文阅读】如何给模型加入先验知识
  • 本地生活服务,快手直播电商外的又一大金矿!
  • 集成华为运动健康服务干货总览
  • 不敲代码用ChatGPT开发一个App
  • ABC206F Interval Game 2
  • python实现一个创建日志收集器代码
  • 智慧水务信息化平台建设,实现供水一体化管控
  • 技术分享| 什么是动态更新?
  • 自动化篇 | 13 | app自动化:airtest
  • Centos搭建k8s
  • 深度学习 - PyTorch入门