当前位置: 首页 > article >正文

关于利用FFT分析时域信号幅相的思考与验证



引言

利用FFT分析/估计时域信号的幅度和相位,属于传统估计的范畴。估计的准确程度受频率分辨率的影响较大。如果被估计的目标频率等于频率分辨率的整数倍,信号的幅相估计都是最准确的。一旦目标频率不等于频率分辨率的整数倍,幅度估计值将会降低,相位估计值会偏差很大。

下面会通过一些仿真来验证。

单点频实信号估计

信号幅值:10

信号相位:45°

信号频率:100Hz

信号类型:实信号

采样率:1000Hz

采样点数:100

频率分辨率:10Hz

信号频率等于分辨率整数倍

MATLAB代码:

clc;
clearvars;
close all;

fs=10e2;
f0=1e2;
p0=-pi/8;
N=100;
t=(0:N-1)/fs;
s=10*cos(2*pi*f0*t+p0);
figure;
subplot(311)
plot(s)
title('时域波形');xlabel('采样点数');ylabel('采样幅度')

subplot(312)
plot((linspace(-fs/2,fs/2-fs/N,N)),abs(fftshift(fft(s)))/N)
title('幅度谱');xlabel('频率/Hz');ylabel('幅度')

subplot(313)
plot((linspace(-fs/2,fs/2-fs/N,N)),angle(fftshift(fft(s)))/pi*180)
title('相位谱');xlabel('频率/Hz');ylabel('相位/°')

 注意,此处分析的双边谱,所以每边高度为 10/2 = 5;

相位估计很准确,是45°相位。

信号频率不等于分辨率整数倍

如果改变采样点数(改为128),使得频率分辨率变化,不等于分辨率的整数倍,则:

clc;
clearvars;
close all;

fs=10e2;
f0=1e2;
p0=pi/4;
N=128;
t=(0:N-1)/fs;
s=10*cos(2*pi*f0*t+p0);
figure;
subplot(311)
plot(s)
title('时域波形');xlabel('采样点数');ylabel('采样幅度')

subplot(312)
plot((linspace(-fs/2,fs/2-fs/N,N)),abs(fftshift(fft(s)))/N)
title('幅度谱');xlabel('频率/Hz');ylabel('幅度')

subplot(313)
plot((linspace(-fs/2,fs/2-fs/N,N)),angle(fftshift(fft(s)))/pi*180)
title('相位谱');xlabel('频率/Hz');ylabel('相位/°')

 根据仿真结果,发现频率、幅度估值有微小偏差,相位的估计值几乎不可信

信号频率等于分辨率整数倍,加噪声

考虑噪声影响:

clc;
clearvars;
close all;

fs=10e2;
f0=1e2;
p0=pi/4;
N=100;
t=(0:N-1)/fs;
s=10*cos(2*pi*f0*t+p0) + 2*randn(1,N);
figure;
subplot(311)
plot(s)
title('时域波形');xlabel('采样点数');ylabel('采样幅度')

subplot(312)
plot((linspace(-fs/2,fs/2-fs/N,N)),abs(fftshift(fft(s)))/N)
title('幅度谱');xlabel('频率/Hz');ylabel('幅度')

subplot(313)
plot((linspace(-fs/2,fs/2-fs/N,N)),angle(fftshift(fft(s)))/pi*180)
title('相位谱');xlabel('频率/Hz');ylabel('相位/°')

 根据仿真结果,信号的频率估计准确,但是幅度和相位的估计存在微小误差。

多点频实信号估计

信号的频点均位于频率分辨率整数倍的位置:

clc;
clearvars;
close all;

fs=10e2;
f0=1e2;
p0=pi/4;
f1=2e2;
p1=pi/2;
N=100;
t=(0:N-1)/fs;
s=10*cos(2*pi*f0*t+p0) + 4*cos(2*pi*f1*t+p1);
figure;
subplot(311)
plot(s)
title('时域波形');xlabel('采样点数');ylabel('采样幅度')

subplot(312)
plot((linspace(-fs/2,fs/2-fs/N,N)),abs(fftshift(fft(s)))/N)
title('幅度谱');xlabel('频率/Hz');ylabel('幅度')

subplot(313)
plot((linspace(-fs/2,fs/2-fs/N,N)),angle(fftshift(fft(s)))/pi*180)
title('相位谱');xlabel('频率/Hz');ylabel('相位/°')

对于多点频信号,只要信号频点均位于分辨率整数倍的位置,其估值都十分准确。

多点频复信号估计

下面再试验一下复信号:

clc;
clearvars;
close all;

fs=10e2;
f0=1e2;
p0=pi/4;
f1=2e2;
p1=pi/2;
N=100;
t=(0:N-1)/fs;
s=10*exp(1j*(2*pi*f0*t+p0)) + 4*exp(1j*(2*pi*f1*t+p1));
figure;
subplot(411)
plot(real(s))
title('时域波形(实部)');xlabel('采样点数');ylabel('采样幅度')

subplot(412)
plot(imag(s))
title('时域波形(虚部)');xlabel('采样点数');ylabel('采样幅度')

subplot(413)
plot((linspace(-fs/2,fs/2-fs/N,N)),abs(fftshift(fft(s)))/N)
title('幅度谱');xlabel('频率/Hz');ylabel('幅度')

subplot(414)
plot((linspace(-fs/2,fs/2-fs/N,N)),angle(fftshift(fft(s)))/pi*180)
title('相位谱');xlabel('频率/Hz');ylabel('相位/°')

 根据仿真结果,可以看出,复信号同样满足上述结论,即信号频率位于分辨率整数倍位置时,用FFT可以精确估计其频率和相位。

结论

结尾处再次说明一下:

不论是是信号还是复信号:

  1. 不加噪声时,位于分辨率整数倍处的信号频率、相位均可以被精确估算;
  2. 不加噪声时,不位于分辨率整数倍处的信号频率的估计存在微小误差、相位估计值基本不可信
  3. 加噪声时,位于分辨率整数倍处的信号频率可以被精确估算,相位估算存在微小偏差;

可以结合代码和仿真进行理解,如有疑问,评论区留言吧~~


http://www.kler.cn/a/982.html

相关文章:

  • 阿里云直播互动Web
  • 量子计算:从薛定谔的猫到你的生活
  • Elasticsearch快速入门
  • G-Star Landscape 2.0 重磅发布,助力开源生态再升级
  • 机器学习05-最小二乘法VS梯度求解
  • 【Rust自学】11.7. 按测试的名称运行测试
  • python 正则使用详解
  • vFlash软件简介
  • 重构对象-Remove Middle Man移除中间人六
  • 漫画:什么是快速排序算法?
  • 一文读懂Js中的this指向
  • 像ChatGPT玩转Excel数据
  • 前端性能优化之HTTP缓存
  • vue以及前端css组件
  • 【C++笔试强训】第三十二天
  • [pytorch]thop计算模型算力和参数量
  • 【深度解刨C语言】符号篇(全)
  • Spring Cloud(微服务)学习篇(五)
  • 【Linux】网络编程套接字(下)
  • 【Python入门第三十三天】Python 字符串格式化
  • 普通Java工程师 VS 优秀架构师
  • Docekr三剑客之 Docekr compose
  • python 内置函数和多线程
  • 手把手学会DFS (递归入门)
  • Python直接复制已有的venv虚拟环境以创建新的虚拟环境
  • 【巨人的肩膀】JAVA面试总结(六)