【算法】单调队列 滑动窗口最大值
文章目录
- 例题——239. 滑动窗口最大值
- 相关练习
- 1438. 绝对差不超过限制的最长连续子数组
- 解法1——两个单调队列分别维护最大值和最小值
- 解法2——有序集合TreeMap
- 2398. 预算内的最多机器人数目
- 解法1——二分答案 + 单调队列
- 解法2——双指针 + 单调队列 (不固定大小的滑动窗口)⭐
- 思考——把「子数组」改成「子序列」要怎么做?1383. 最大的团队表现值🐂
- 解法——排序+利用堆
- 862. 和至少为 K 的最短子数组⭐⭐⭐⭐⭐
- 解法1——单调队列
- 1499. 满足不等式的最大值
- 解法——单调队列
https://www.bilibili.com/video/BV1bM411X72E/
例题——239. 滑动窗口最大值
https://leetcode.cn/problems/sliding-window-maximum/description/
提示:
1 <= nums.length <= 10^5
-10^4 <= nums[i] <= 10^4
1 <= k <= nums.length
模板题,维护一个固定长度窗口内的最大值。
单调队列是递减的,这样队首的就i是窗口中的最大值。
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
Deque<Integer> dq = new ArrayDeque<>();
int n = nums.length;
int[] ans = new int[n - k + 1];
for (int i = 0; i < n; ++i) {
// 维护单调队列的单调性
while (!dq.isEmpty() && nums[i] > nums[dq.peekLast()]) dq.pollLast();
// 移除窗口外的元素
while (!dq.isEmpty() && dq.peekFirst() <= i - k) dq.pollFirst();
dq.offerLast(i); // 加入单调队列
if (i >= k - 1) ans[i - k + 1] = nums[dq.peekFirst()];
}
return ans;
}
}
相关练习
1438. 绝对差不超过限制的最长连续子数组
https://leetcode.cn/problems/longest-continuous-subarray-with-absolute-diff-less-than-or-equal-to-limit/description/
提示:
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^9
0 <= limit <= 10^9
解法1——两个单调队列分别维护最大值和最小值
使用两个单调队列分别维护窗口中的最大值和最小值,当最大值和最小值之间的差不符合条件时,将两个队列中靠左的位置移除直到满足条件。
class Solution {
public int longestSubarray(int[] nums, int limit) {
int ans = 0, n = nums.length, st = 0;
Deque<Integer> dq1 = new ArrayDeque<>(), dq2 = new ArrayDeque<>();
for (int i = 0; i < n; ++i) {
while (!dq1.isEmpty() && nums[i] >= nums[dq1.peekLast()]) dq1.pollLast();
while (!dq2.isEmpty() && nums[i] <= nums[dq2.peekLast()]) dq2.pollLast();
dq1.offer(i);
dq2.offer(i);
while (nums[dq1.peekFirst()] - nums[dq2.peekFirst()] > limit) {
if (dq1.peekFirst() < dq2.peekFirst()) st = dq1.pollFirst() + 1;
else st = dq2.pollFirst() + 1;
}
ans = Math.max(ans, i - st + 1);
}
return ans;
}
}
解法2——有序集合TreeMap
class Solution {
public int longestSubarray(int[] nums, int limit) {
TreeMap<Integer, Integer> tm = new TreeMap<>();
int ans = 0;
for (int l = 0, r = 0; r < nums.length; ++r) {
tm.merge(nums[r], 1, Integer::sum);
while (tm.lastKey() - tm.firstKey() > limit) {
tm.merge(nums[l], -1, Integer::sum);
if (tm.get(nums[l]) == 0) tm.remove(nums[l]);
l++;
}
ans = Math.max(r - l + 1, ans);
}
return ans;
}
}
2398. 预算内的最多机器人数目
https://leetcode.cn/problems/maximum-number-of-robots-within-budget/description/
提示:
chargeTimes.length == runningCosts.length == n
1 <= n <= 5 * 10^4
1 <= chargeTimes[i], runningCosts[i] <= 10^5
1 <= budget <= 10^15
解法1——二分答案 + 单调队列
二分 k,每个子问题都类似 滑动窗口最大值。
class Solution {
int[] chargeTimes, runningCosts;
long budget;
public int maximumRobots(int[] chargeTimes, int[] runningCosts, long budget) {
this.chargeTimes = chargeTimes;
this.runningCosts = runningCosts;
this.budget = budget;
int n = chargeTimes.length;
// 二分答案
int l = 0, r = n;
while (l < r) {
int mid = l + r + 1 >> 1;
if (check(mid)) l = mid;
else r = mid - 1;
}
return l;
}
public boolean check(int k) {
long s = 0;
// 单调递减的单调队列
Deque<Integer> dq = new ArrayDeque<>();
for (int i = 0; i < chargeTimes.length; ++i) {
s += runningCosts[i];
if (i >= k) s -= runningCosts[i - k];
while (!dq.isEmpty() && chargeTimes[i] >= chargeTimes[dq.peekLast()]) {
dq.pollLast();
}
dq.offer(i);
while (!dq.isEmpty() && i - dq.peekFirst() >= k) dq.pollFirst();
if (i >= k - 1 && budget >= k * s + chargeTimes[dq.peekFirst()]) return true;
}
return false;
}
}
解法2——双指针 + 单调队列 (不固定大小的滑动窗口)⭐
class Solution {
public int maximumRobots(int[] chargeTimes, int[] runningCosts, long budget) {
int n = chargeTimes.length, ans = 0;
long s = 0L;
Deque<Integer> dq = new ArrayDeque<>();
for (int l = 0, r = 0; r < n; ++r) {
while (!dq.isEmpty() && chargeTimes[r] >= chargeTimes[dq.peekLast()]) dq.pollLast();
dq.offerLast(r);
s += runningCosts[r];
// 如果左端点 left 不满足要求,就不断右移 left
while (!dq.isEmpty() && chargeTimes[dq.peekFirst()] + (r - l + 1) * s > budget) {
if (dq.peekFirst() == l) dq.pollFirst();
s -= runningCosts[l++];
}
ans = Math.max(ans, r - l + 1);
}
return ans;
}
}
思考——把「子数组」改成「子序列」要怎么做?1383. 最大的团队表现值🐂
https://leetcode.cn/problems/maximum-performance-of-a-team/description/
提示:
1 <= k <= n <= 10^5
speed.length == n
efficiency.length == n
1 <= speed[i] <= 10^5
1 <= efficiency[i] <= 10^8
解法——排序+利用堆
根据 efficiency 从大到小排序,前面的都是可用的。
最多选择 k 个人员,则堆的大小设置为 k,每次满了去除最小的。
注意!当前最为 effciency 最小值的人员是必选的。
class Solution {
public int maxPerformance(int n, int[] speed, int[] efficiency, int k) {
final long MOD = (int)1e9 + 7;
PriorityQueue<Integer> pq = new PriorityQueue<>();
Integer[] idx = new Integer[n];
Arrays.setAll(idx, e -> e);
// 按效率倒序排序
Arrays.sort(idx, (x, y) -> (efficiency[y] - efficiency[x]));
long ans = 0, s = 0;
for (int i = 0; i < n; ++i) {
pq.offer(speed[idx[i]]);
s += speed[idx[i]];
ans = Math.max(ans, s * efficiency[idx[i]]);
if (pq.size() == k) {
s -= pq.poll();
}
}
return (int)(ans % MOD);
}
}
862. 和至少为 K 的最短子数组⭐⭐⭐⭐⭐
https://leetcode.cn/problems/shortest-subarray-with-sum-at-least-k/description/
提示:
1 <= nums.length <= 10^5
-10^5 <= nums[i] <= 10^5
1 <= k <= 10^9
解法1——单调队列
https://leetcode.cn/problems/shortest-subarray-with-sum-at-least-k/solutions/1925036/liang-zhang-tu-miao-dong-dan-diao-dui-li-9fvh/
class Solution {
public int shortestSubarray(int[] nums, int k) {
int n = nums.length, ans = n + 1;
long[] s = new long[n + 1];
for (int i = 0; i < n; ++i) s[i + 1] = s[i] + nums[i];
// 单调递增的单调队列
Deque<Integer> dq = new ArrayDeque<>();
for (int i = 0; i <= n; ++i) {
long curS = s[i];
while (!dq.isEmpty() && curS - s[dq.peekFirst()] >= k) {
ans = Math.min(ans, i - dq.pollFirst());
}
while (!dq.isEmpty() && s[dq.peekLast()] >= curS) {
dq.pollLast();
}
dq.offerLast(i);
}
return ans == n + 1? -1: ans;
}
}
1499. 满足不等式的最大值
https://leetcode.cn/problems/max-value-of-equation/
提示:
2 <= points.length <= 10^5
points[i].length == 2
-10^8 <= points[i][0], points[i][1] <= 10^8
0 <= k <= 2 * 10^8
对于所有的1 <= i < j <= points.length ,points[i][0] < points[j][0] 都成立。也就是说,xi 是严格递增的。
解法——单调队列
按 y - x 单调递减,这样每次取最前面的计算即可。
当 x 距离较远时,需要移除位于队首的元素。
class Solution {
public int findMaxValueOfEquation(int[][] points, int k) {
int n = points.length, ans = Integer.MIN_VALUE;
// yi+yj+xi-xj最大,即yj-xj最大,且满足xi-xj<=k
// 按y-x单调递减的单调队列
Deque<Integer> dq = new ArrayDeque<>();
for (int i = 0; i < n; ++i) {
int x = points[i][0], y = points[i][1];
// 把前面不能用的去掉
while (!dq.isEmpty() && x > points[dq.peekFirst()][0] + k) dq.pollFirst();
if (!dq.isEmpty()) {
ans = Math.max(ans, x + y + points[dq.peekFirst()][1] - points[dq.peekFirst()][0]);
}
// 保持单调性
while (!dq.isEmpty() && y - x >= points[dq.peekLast()][1] - points[dq.peekLast()][0]) dq.pollLast();
dq.offerLast(i);
}
return ans;
}
}
这道题目的特点是——远了的不行,要移出去。这就是出了窗口。
用单调队列 维护可以在窗口中的最大值,就可以方便地计算了。