当前位置: 首页 > article >正文

当线性规划与算法相遇:揭秘单纯形法(Simplex)的独特魅力

传统的解决线性规划问题的方法是图形法、代数法求解,但是图形法解题有极大的局限性,因为一旦变量超过3个,基本上就无法通过图形解决,而代数法虽然可以解题,但对于复杂的问题可能效果较差甚至无法求解!
相比图形法和代数法,单纯形法解决线性规划问题具有以下优势:

  1. 理论基础强:单纯形法是基于线性规划的基本理论,通过系统的迭代过程逐步逼近最优解。它是一种可行的、确定性的算法,能够找到问题的最优解或者确定问题是无界或无解的。
  2. 高效性:在实践中,单纯形法通常能够在合理的时间内找到线性规划问题的最优解。尤其对于具有稀疏性质的问题,单纯形法的性能更为出色。此外,单纯形法的计算复杂度与问题规模的增长呈多项式关系。
  3. 灵活性:单纯形法适用于各种类型的线性规划问题,包括有约束的和无约束的问题。它可以处理多目标函数、等式约束、不等式约束、非线性约束等多种情况。
  4. 可以进行优化:单纯形法可以通过一些优化策略来提高算法的效率,例如早期停止条件、对偶单纯形法等。这些优化措施可以在实际应用中进一步加速算法的执行。
  5. 可解释性强:单纯形法的迭代过程很容易理解和解释。每个迭代步骤都代表着一种改进,可以直观地解释为什么选择某个变量作为进基变量或出基变量,从而得到更优解。

尽管单纯形法具有以上优势,但对于大规模问题或非常稀疏的问题,单纯形法可能会遇到性能瓶颈。在这种情况下,可以考虑使用其他更高效的线性规划算法,例如内点法、启发式算法或者列生成法等。
具体使用单纯形法解题的步骤如下所示:

  1. 化一般型为标准型,求初始基本可信解,建立初始单纯形表;
  2. 求检验数并判断,若已得到最优解,结束计算;否则转入下一步;
  3. 进行基变换,构建新的单纯形表进行迭代;
  4. 重复步骤二、三,直到得出最优解、重复解或无最优解等。

1.化标准型

我们常见的线性规划模型的一般型为:
目标函数: m a x ( m i n ) Z = ∑ j = 1 n c j x j 约束条件: { ∑ j = 1 n a i j x j ≥ ( ⩽ ) b i , i = 1 , 2 , ⋯   , m x j ≥ 0 , j = 1 , 2 , ⋯   , n \begin{aligned} 目标函数:& max(min) Z=\sum_{j=1}^{n}c_{j}x_{j} \\ 约束条件:& \left\{\begin{matrix} \sum_{j=1}^{n}a_{ij}x_{j} \geq (\leqslant )b_{i} ,i=1,2,\cdots ,m\\ \\ x_{j}\geq 0,j=1,2,\cdots ,n \end{matrix}\right. \end{aligned} 目标函数:约束条件:max(min)Z=j=1ncjxj j=1naijxj()bi,i=1,2,,mxj0,j=1,2,,n
单纯形法是一种求解线性规划问题的常用方法,其第一步是将线性规划问题转化为标准型,主要是为了方便后续的计算和迭代。
将线性规划问题转化为标准型的目的有以下几个方面:

  1. 约束条件的统一表示:标准型可以将线性规划问题的约束条件统一表示为等式形式,即将不等式约束和非负约束都表示为等式约束。这样可以简化计算过程和算法的设计。
  2. 约束条件的非负性:标准型要求所有变量的取值都非负,这样可以确保问题的可行解存在。通过引入松弛变量或人工变量,将不等式约束转化为等式约束,并引入非负约束,确保问题的可行性。
  3. 目标函数的最大化或最小化:标准型要求将目标函数转化为最小化形式。对于最大化问题,可以通过将目标函数乘以-1来转化为最小化问题,并利用单纯形法求解。
    通过化为标准型,可以将线性规划问题转化为一个更加结构化和规范化的形式,方便应用单纯形法进行迭代计算。标准型的形式更加适合使用单纯形表格来表示和计算,使得单纯形法的步骤更加清晰和易于理解。
    需要注意的是,并非所有的线性规划问题都能够直接转化为标准型,有些问题需要经过一些额外的转化步骤才能达到标准型的形式。但是,一旦将问题转化为标准型,就可以直接应用单纯形法进行求解。
    具体线性规划模型的标准型为:
    目标函数: m a x Z = ∑ j = 1 n c j x j 约束条件: { ∑ j = 1 n a i j x j = b i , i = 1 , 2 , ⋯   , m x j ≥ 0 , j = 1 , 2 , ⋯   , n \begin{aligned} 目标函数:& maxZ=\sum_{j=1}^{n}c_{j}x_{j} \\ 约束条件:& \left\{\begin{matrix} \sum_{j=1}^{n}a_{ij}x_{j} =b_{i} ,i=1,2,\cdots ,m\\ \\ x_{j}\geq 0,j=1,2,\cdots ,n \end{matrix}\right. \end{aligned} 目标函数:约束条件:maxZ=j=1ncjxj j=1naijxj=bi,i=1,2,,mxj0,j=1,2,,n
    标准型的要求主要为:
    (1)目标函数为求最大值
    (2)约束条件均为等式方程
    (3)变量 x j x_{j} xj为非负
    (4)常数 b i b_{i} bi都大于等于零
    下面引入一个简单的例子并将其化为标准型:
    其线性规划问题的一般型为:
    m a x   z = 6 x 1 − 2 x 2 + x 3 { 2 x 1 − x 2 + 2 x 3 ⩽ 2 x 1 + 4 x 3 ⩽ 4 x 1 , x 2 , x 3 ⩾ 0 \begin{aligned} max \ z=6x_{1}-2x_{2}+x_{3} \\ \left\{\begin{matrix} 2x_{1}-x_{2}+2x_{3}\leqslant 2\\ x_{1}+4x_{3}\leqslant 4\\ x_{1},x_{2},x_{3}\geqslant 0 \end{matrix}\right. \end{aligned} max z=6x12x2+x3 2x1x2+2x32x1+4x34x1,x2,x30
    将其转换为标准型为:
    m a x   z = 6 x 1 − 2 x 2 + x 3 + 0 x 4 + 0 x 5 { 2 x 1 − 1 x 2 + 2 x 3 + 1 x 4 + 0 x 5 = 2 1 x 1 + 0 x 2 + 4 x 3 + 0 x 4 + 1 x 5 = 4 x 1 , x 2 , x 3 , x 4 , x 5 ≥ 0 \begin{aligned} max \ z=6x_{1}-2x_{2}+x_{3}+0x_{4}+0x_{5}\\ \left\{\begin{matrix} 2x_{1}-1x_{2}+2x_{3}+1x_{4}+0x_{5}=2\\ 1x_{1}+0x_{2}+4x_{3}+0x_{4}+1x_{5}=4\\ x_{1},x_{2},x_{3},x_{4},x_{5}\geq 0 \end{matrix}\right. \end{aligned} max z=6x12x2+x3+0x4+0x5 2x11x2+2x3+1x4+0x5=21x1+0x2+4x3+0x4+1x5=4x1,x2,x3,x4,x50

2.求检验数并判断最优解

在单纯形法中,一旦将线性规划问题转化为标准型,可以通过以下步骤求解检验数,并判断是否达到最优解:

  1. 制作初始单纯形表格:根据标准型的形式,构造初始单纯形表格,包括目标函数的系数、约束条件的系数矩阵、右侧常数项等。
  2. 计算检验数:在初始单纯形表格中,计算每个变量的检验数。检验数表示在目标函数中增加或减少一个单位变量的值时,目标函数值的变化。检验数的计算公式为:检验数 = 目标函数系数 - 系数矩阵中对应列的系数与目标函数系数的乘积。
  3. 判断是否达到最优解:若所有的检验数都为非负数,则当前解为最优解。因为如果存在负的检验数,将会导致目标函数值继续改善,因此需要进行下一步的迭代。
    具体初始单纯形表如下所示:
    在这里插入图片描述
    注意,这里对参数进行解释: c k c_{k} ck表示各个变量的价值系数,这里可以从目标函数 m a x   z = 6 x 1 − 2 x 2 + x 3 + 0 x 4 + 0 x 5 max \ z=6x_{1}-2x_{2}+x_{3}+0x_{4}+0x_{5} max z=6x12x2+x3+0x4+0x5可以看出各个变量( x 1 、 x 2 、 x 3 、 x 4 、 x 5 x_{1}、x_{2}、x_{3}、x_{4}、x_{5} x1x2x3x4x5)下面的数值,我们只需要看约束条件即可。
    { 2 x 1 − 1 x 2 + 2 x 3 + 1 x 4 + 0 x 5 = 2 1 x 1 + 0 x 2 + 4 x 3 + 0 x 4 + 1 x 5 = 4 \begin{aligned} \left\{\begin{matrix} 2x_{1}-1x_{2}+2x_{3}+1x_{4}+0x_{5}=2\\ 1x_{1}+0x_{2}+4x_{3}+0x_{4}+1x_{5}=4\\ \end{matrix}\right. \end{aligned} {2x11x2+2x3+1x4+0x5=21x1+0x2+4x3+0x4+1x5=4
    X B X_{B} XB代表基变量,具体基变量的找法,我们只需要在系数矩阵中找到对应的单位矩阵,单位矩阵所对应的变量即为基变量,因此,从初始单纯形表可以看出, x 4 、 x 5 x_{4}、x_{5} x4x5即为基变量。
    c B c_{B} cB代表右侧基变量所对应的价值系数,初始单纯形表的基变量对应的价值系数分别是0、0
    b b b这一列称之为资源限量,填写的时候,只需要看系数矩阵中右侧的数字即可
    求基本可行解时,只需要设置全部非基变量为0,即令 x 1 、 x 2 、 x 3 = 0 x{1}、x{2}、x_{3}=0 x1x2x3=0,这样可以求出基变量 x 4 = 2 , x 5 = 4 x_{4}=2,x_{5}=4 x4=2,x5=4,所以基本可行解为 ( 0 , 0 , 0 , 2 , 4 ) T (0,0,0,2,4)^T (0,0,0,2,4)T
    接下来,我们需要通过计算检验数来判断该解是否为最优解,即分别计算 ( x 1 、 x 2 、 x 3 、 x 4 、 x 5 ) (x_{1}、x_{2}、x_{3}、x_{4}、x_{5}) (x1x2x3x4x5)所对应的检验数 σ j \sigma_{j} σj,其计算方式为 c j − c B x j c_{j}-c_{B}x_{j} cjcBxj
    若当前计算的所有 σ j \sigma_{j} σj都小于等于0,即表示当前基础可行解为最优解,否则还需要进行基变换来进一步求得最优解!

3.基变换

基变换的作用就会帮我们找到下一个可行解,简单来说就是用当前一个非基变量来替换基变量,也就是让非基变量入基,让基变量出基。
在确定哪个非基变量入基的时候,我们只需要看检验数,当前最大的检验数对应的变量,就是需要入基的非基变量,当前是 x 1 x_{1} x1,它对应的检验数为6,是当前所有检验数的最大值。
接下来就需要确定出基变量,那么首先就需要计算 θ \theta θ,其计算方法就是b这一列和确定入基 x 1 x_{1} x1这一列相除得到,即为 ( 1 , 4 ) T (1,4)^T (1,4)T,计算好 θ \theta θ后,我们只需要找 θ \theta θ值中的最小值,其最小值对应的变量 x 4 x_{4} x4就是所对应的出基变量。
紧接着就需要把入基变量 x 1 x_{1} x1和出基变量 x 4 x_{4} x4中相交的数字经过行列运算变换为1,其对应的同列元素全部变换为0,计算完毕后就对应着下一个单纯形表。
具体下一个单纯形表如下所示:
在这里插入图片描述
这里需要注意,你可能看到 θ \theta θ对对应的第一个数填的是-,那是因为当前入基 x 2 x_{2} x2对应的数字为负数,因此不需要计算。
由此可以看出,并不是所有的检验数都为小于等于零,因此,当前的基础可行解仍然不是最优解,所以还需要进一步进行基变换,下面就不对基变换的过程进行详解,仅仅展示最优求得最优解所对应的单纯形表。
在这里插入图片描述
至此,从图表中可以看出,全部变量对应的检验数都小于等于0,因此,此时多对应的解为最优解,最优解为 ( 4 , 6 , 0 , 0 , 0 ) T (4,6,0,0,0)^T (4,6,0,0,0)T

4.结果判定方法

具体解的判定方法如下所示:
在这里插入图片描述


http://www.kler.cn/a/107206.html

相关文章:

  • UDP协议和TCP协议之间有什么具体区别?
  • qt QKeySequence详解
  • 树形dp总结
  • INQUIRE:一个包含五百万张自然世界图像,涵盖10,000个不同物种的专为专家级文本到图像检索任务设计的新型基准数据集。
  • CentOS 服务
  • JSON-RPC-CXX深度解析:C++中的远程调用利器
  • 最新Python深度学习技术进阶与应用
  • 【广州华锐互动】智能家居设计3D虚拟还原系统
  • FPGA时序分析与约束(7)——通过Tcl扩展SDC
  • WORD中的表格内容回车行距过大无法调整行距
  • 【STM32】STM32中断体系
  • 【期中复习】深度学习
  • Games 103 作业二
  • 10款轻量型的嵌入式GUI库分享
  • C++前缀和算法的应用:使数组相等的最小开销
  • 基于Python Django 的微博舆论、微博情感分析可视化系统(V2.0)
  • 如何快速安装MONAI(莫奈)医学标注软件
  • Xray的简单使用
  • Spring 更简单的读取和存储对象
  • docker - window Docker Desktop升级
  • redis集群的多key原子性操作如何实现?
  • Oracle RU 19.21及 datapatch -sanity_checks
  • js中HTMLCollection如何循环
  • 基于springboot实现校园志愿者管理系统项目【项目源码+论文说明】计算机毕业设计
  • 【ARMv8 SIMD和浮点指令编程】NEON 存储指令——如何将数据从寄存器存储到内存?
  • 系列二十二、如何在Spring中所有的bean都创建完成后做扩展