当前位置: 首页 > article >正文

机器学习算法系列(三)

机器学习算法之–对数几率回归(逻辑斯蒂回归)算法

上个算法(算法系列二)介绍了如何使用线性模型进行回归学习,但若要做的是分类任务,则需要找一个单调可微函数将分类任务的真实标记y与线性回归模型的预测值联系起来。

虽然名字叫回归,但其实是分类学习方法

一、算法原理

对于给定的输入实例x,可求出P(Y=0|x)和P(Y=1|x)的条件概率值的大小比较,将实例x分到概率值较大的那一类。

1.1、预测函数

找出一个预测函数模型,输出值在[0,1]之间。接着,再选择一个基准值(例如0.5),若预测值》0.5,则预测为1;否则预测为0;【二分类问题】

我们可选择: g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+ez1作为预测函数。
该函数称为Sigmoid函数,也可称作Logistic函数(名称由来),其图形如下

图中可以看出:

  • z=0:g(z) = 0.5
  • z>0:g(z) > 0.5,当z越来越大时,g(z)无限接近于1。
  • z<0:g(z) < 0.5,当z越来越小时,g(z)无限接近于0。

显然,这正符合我们想要的分类方式。

我们再结合线性回归的预测函数 h θ ( x ) = θ T x h_\theta(x)=\theta^Tx hθ(x)=θTx,则逻辑斯蒂回归算法的预测函数如下: r = h θ ( x ) = g ( z ) = g ( θ T x ) = 1 1 + e − θ T x r=h_\theta(x)=g(z)=g(\theta^Tx)=\frac{1}{1+e^{-\theta^Tx}} r=hθ(x)=g(z)=g(θTx)=1+eθTx1

此处求解的是在输入x,参数θ的前提下,y=1的概率,用概率论公式可表示为 h θ ( x ) = P ( y = 1 ∣ x , θ ) h_\theta(x)=P(y=1|x,\theta) hθ(x)=P(y=1∣x,θ)
且必有: P ( y = 1 ∣ x , θ ) + P ( y = 0 ∣ x , θ ) = 1 P(y=1|x,\theta)+P(y=0|x,\theta)=1 P(y=1∣x,θ)+P(y=0∣x,θ)=1

r为正例可能性,1-r是其反例可能性,二者比值 r 1 − r \frac{r}{1-r} 1rr称为“几率”,反映了x作为正例的相对可能性,进一步对几率取对数,则得到“对数几率” l n r 1 − r ln\frac{r}{1-r} ln1rr
在二分类中,这是一个非黑即白的世界

实际上,这是在用线性回归模型的预测结果去逼近真是标记的对数几率,因此成为对数几率回归

对于

算法优点:

  • 直接对分类可能性进行建模,无需事先假设数据分布
  • 可得到近似概率预测
  • 求解的目标函数是任意阶可导凸函数,数学性质very good

1.2、参数估计(如何计算θ)

在训练过程中,算法通过最大化似然函数求解θ。具体来说,似然函数表示的是P(Y|X)的条件概率。统计学家通常使用“最大似然估计”方法来进行参数估计。这种方法就是求解参数W,使得模型的似然函数在已知观测数据下最大。
l n P ( y = 1 ∣ x ) 1 − P ( y = 0 ∣ x ) = θ T x = w x ln\frac{P(y=1|x)}{1-P(y=0|x)} = \theta^Tx=wx ln1P(y=0∣x)P(y=1∣x)=θTx=wx

也就是说,在逻辑回归中,输出y=1的对数几率是输入x的线性函数
显然有, P ( y = 1 ∣ x ) = e θ T x 1 + e θ T x P ( y = 0 ∣ x ) = 1 1 + e θ T x P(y=1|x)=\frac{e^{\theta^Tx}}{1+e^{\theta^Tx}}\\P(y=0|x)=\frac{1}{1+e^{\theta^Tx}} P(y=1∣x)=1+eθTxeθTxP(y=0∣x)=1+eθTx1

设: P ( y = 1 ∣ x ) = π ( x ) , P ( y = 0 ∣ x ) = 1 − π ( x ) P(y=1|x)=\pi(x), P(y=0|x)=1-\pi(x) P(y=1∣x)=π(x),P(y=0∣x)=1π(x)
于是可以通过极大似然估计来估计模型参数,似然函数为
∏ i = 1 n [ π ( x i ) ] y i [ 1 − π ( x ) ] 1 − y i \prod_{i=1}^n[\pi(x_i)]^{y^i}[1-\pi(x)]^{1-y^i} i=1n[π(xi)]yi[1π(x)]1yi
对数似然函数为 L ( w ) = ∑ i = 1 n [ y i l o g π ( x i ) + ( 1 − y i ) l o g ( 1 − π ( x ) ) ] L(w)=\sum_{i=1}^n[y_ilog\pi(x_i)+(1-y_i)log(1-\pi(x))] L(w)=i=1n[yilogπ(xi)+(1yi)log(1π(x))]

  • 成本函数(所有样本的成本平均值):- 1 n L ( w ) \frac{1}{n}L(w) n1L(w)

L ( w ) 求极值,便可得到 w 的估计值,问题也就变成了第一对数似然函数为目标的最优化问题 L(w)求极值,便可得到w的估计值,问题也就变成了第一对数似然函数为目标的最优化问题 L(w)求极值,便可得到w的估计值,问题也就变成了第一对数似然函数为目标的最优化问题

二、模型优化

2.1、梯度下降算法、

根据梯度下降算法定义,可以得到
θ j = θ j − α ∂ J ( θ ) ∂ θ j \theta_j=\theta_j-\alpha\frac{\partial J(\theta)}{\partial \theta_j} θj=θjαθjJ(θ)
此处关键是求成本函数的偏导数,最终得到梯度下降算法公式
θ j = θ j − α 1 m ∑ i = 1 m ( ( h ( x i ) − y i ) x j i ) \theta_j= \theta_j-\alpha\frac{1}{m}\sum_{i=1}^m ((h(x^i)-y^i)x_j^i) θj=θjαm1i=1m((h(xi)yi)xji)

注意此处的形式和线性回归算法的参数迭代公式是一样的,但数值计算方法完全不同
逻辑: h θ ( x ) = 1 1 + e − θ T x h_\theta(x)=\frac{1}{1+e^{-\theta^Tx}} hθ(x)=1+eθTx1
线性: h θ ( x ) = θ T x h_\theta(x)=\theta^Tx hθ(x)=θTx

*除了梯度下降算法之外,还有拟牛顿法等都可以求得其最优解

三、多元分类

逻辑回归可以解决二分类问题,那如果需要分类的超过了两个类别呢?显然也是也以应对的。

假设总共有n+1个类别,y={0,1,2,3,…,n},思路是转化为二元分类

  • 类别一:0,类别二:1~n,分别计算概率;
  • 类别一:1,类别二:0,2~n,再分别计算概率;
  • 类别一:n,类别二:0~n-1,再分别计算概率。

由此可见,总共需要n+1个预测函数,分别计算P(y=0|x,θ),…,P(y=n|x,θ)

  • 最后预测值: p r e d i c t i o n = m a x i ( h θ ( i ) ( x ) ) prediction=max_i(h_\theta^{(i)}(x)) prediction=maxi(hθ(i)(x))

预测出概率最高的哪个类别,就是样本所属类别

四、正则化

  • 采用正则化可以用来解决模型过拟合问题
  • 保留所有的特征,减少特征的权重 θ j \theta_j θj的值,确保所有的特征对预测值都有少量的贡献。
    当每个特征Xi对预测值Y都有少量的贡献时,这样的模型可以良好的工作,这就是正则化的目的。

http://www.kler.cn/a/11946.html

相关文章:

  • 如何线程安全的使用HashMap
  • 用户裂变数据分析
  • 模型压缩相关技术概念澄清(量化/剪枝/知识蒸馏)
  • 杨辉三角-一维数组与二维数组解法
  • Stable Diffusion Web UI - ControlNet 姿势控制 openpose
  • docker 拉取MySQL8.0镜像以及安装
  • 命令设计模式(Command Pattern)[论点:概念、组成角色、相关图示、示例代码、框架中的运用、适用场景]
  • 【计算机图形学】扫描转换算法(Bresenham1/4圆法 椭圆两头逼近法 方形刷子)
  • 密度聚类算法(DBSCAN)实验案例
  • LeetCode每日一题 1023. 驼峰式匹配 --双指针
  • 零零信安-DD数据泄露报警日报 【第144期】
  • MySQL创建数据表(CREATE TABLE语句)
  • [STM32F103C8T6]DMA
  • 4.17日报
  • 代码随想录算法训练营第三十九天-动态规划2|62.不同路径 , 63. 不同路径 II
  • 原生JS + HTML + CSS 实现快递物流信息 API 的数据链式展示
  • RabbitMQ之介绍
  • 2023TYUT移动应用软件开发程序修改题
  • C/C++程序设计——static关键字
  • NumPy 秘籍中文第二版:四、将 NumPy 与世界的其他地方连接
  • 「数字信号处理」MATLAB设计 双音多频拨号系统
  • ESP32设备驱动-MAX30102脉搏血氧饱和度和心率监测传感器驱动
  • 【GB28181】PJSIP库(七)C++接口PJSUA2类详解:Call、Buddy
  • 发令枪音效芯片,语音提示ic
  • WMS智能仓储
  • winForm目录文件介绍