当前位置: 首页 > article >正文

【算法日志】图论 并查集及其简单应用

【算法日志】图论: 并查集及其简单应用

并查集概论

并查集是一种算法设计思想,通过判断两个元素是否在同一个集合里,常用来解决一些和图相关的连通性问题。

并查集主要有以下两个功能:

  • 将两个元素添加到一个集合中。
  • 判断两个元素是否是在一个集合之中(这一功能够有效判断是否成环)。

主要思想:

通过创建一个数组用来保每个点的最老根节点,以此来实现并查集的各种功能。

具体模板如下:

int n = 1005; // n根据题目中节点数量而定,一般比节点数量大一点就好
vector<int> father = vector<int> (n, 0); // C++里的一种数组结构
// 并查集初始化
void init() {
    for (int i = 0; i < n; ++i) {
        father[i] = i;
    }
}
// 并查集里寻根的过程
int find(int u) {
    return u == father[u] ? u : father[u] = find(father[u]); // 路径压缩
}
// 判断 u 和 v是否找到同一个根
bool isSame(int u, int v) {
    u = find(u);
    v = find(v);
    return u == v;
}
// 将v->u 这条边加入并查集
void join(int u, int v) {
    u = find(u); // 寻找u的根
    v = find(v); // 寻找v的根
    if (u == v) return ; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回
    father[v] = u;
}

简单应用

leetcode 1971:寻找是否存在路径

本题是双向图,只要始末点相连就存在有效路径,因此只需要将合并树,判断始末节点的最老根节点是否一样就行。

具体示例代码如下:

	void Init(vector<int>& f, const int& n)
	{
		for (int i = 0; i < n; ++i)
			f[i] = i;
	}
	int find(vector<int>& f, int v)
	{
		return v == f[v] ? v : find(f, f[v]);
	}
	bool isSame(vector<int>& f, int v, int u)
	{
		v = find(f, v);
		u = find(f, u);
		return v == u;
	}
	void join(vector<int>& f, int v, int u)
	{
		v = find(f, v);
		u = find(f, u);
		if (v != u)
			f[u] = v;
	}

	bool validPath(int n, vector<vector<int>>& edges, int source, int destination)
	{
		vector<vector<int>> path;
		vector<int> father(n + 1, 0);
		Init(father, n + 1);
		int size = edges.size();
		for (int i = 0; i < size; ++i)
			join(father, edges[i][0], edges[i][1]);
		return isSame(father, source, destination);
	}
leetcode 648: 冗余连接

本题要连接的点在连接前存在共同根节点,那么连接该两点就会形成环路,因此需要移除的边就是以这两点为端点的边。

具体示例代码如下:

	void Init(vector<int>& f, const int& n)
	{
		for (int i = 0; i < n; ++i)
			f[i] = i;
	}
	int find(vector<int>& f, int v)
	{
		return v == f[v] ? v : find(f, f[v]);
	}
	bool isSame(vector<int>& f, int v, int u)
	{
		v = find(f, v);
		u = find(f, u);
		return v == u;
	}
	void join(vector<int>& f, int v, int u)
	{
		v = find(f, v);
		u = find(f, u);
		if (v != u)
			f[u] = v;
	}
	vector<int> findRedundantConnection(vector<vector<int>>& edges)
	{
		int n = edges.size();
		vector<int> father(n + 1, 0);
		Init(father, n + 1);
		for (int i = 0; i < n; ++i)
		{
			if (isSame(father, edges[i][0], edges[i][1]))
				return { edges[i][0], edges[i][1] };
			join(father, edges[i][0], edges[i][1]);
		}
		return {};
	}

http://www.kler.cn/a/133751.html

相关文章:

  • java开发,IDEA转战VSCODE配置(mac)
  • Web安全攻防入门教程——hvv行动详解
  • NIO | 什么是Java中的NIO —— 结合业务场景理解 NIO (一)
  • 计算机视觉——Intel RealSense D435的使用及python环境下的实现
  • qml Timer详解
  • 国产编辑器EverEdit - 快捷目录
  • [C国演义] 哈希的使用和开闭散列的模拟实现
  • 【网络通信】探索UDP与TCP协议、IP地址和端口号的奥妙
  • 计算机科学速成课
  • 单链表在线OJ题(详解+图解)
  • vscode文件夹折叠问题
  • 音视频项目—基于FFmpeg和SDL的音视频播放器解析(六)
  • 多线程(初阶)
  • 【IPC】消息队列
  • 针对CSP-J/S的每日一练:Day9
  • Sqlite安装配置及使用
  • vscode中Chinese (Simplified)汉化无效解决方法
  • 我叫:选择排序【JAVA】
  • 教程:使用 Keras 优化神经网络
  • qml制作简单的播放器--MediaPlayer
  • 如何使用贝锐花生壳内网穿透远程访问JupyterNotebook?
  • springboot项目yml文件中使用${}配置
  • linux下安装python3.8(有坑)
  • ping命令使用示例解析
  • ubuntu20.04在docker下运行ros-noetic进行开发
  • 【电路笔记】-最大功率传输