当前位置: 首页 > article >正文

数据结构与算法之美学习笔记:21 | 哈希算法(上):如何防止数据库中的用户信息被脱库?

目录

  • 前言
  • 什么是哈希算法?
  • 应用一:安全加密
  • 应用二:唯一标识
  • 应用三:数据校验
  • 散列函数
  • 解答开篇
  • 内容小节

前言

在这里插入图片描述
本节课程思维导图
在这里插入图片描述
如果你是 一名工程师,你会如何存储用户密码这么重要的数据吗?仅仅 MD5 加密一下存储就够了吗?我今天不会重点剖析哈希算法的原理,也不会教你如何设计一个哈希算法,而是从实战的角度告诉你,在实际的开发中,我们该如何用哈希算法解决问题。

什么是哈希算法?

实际上,不管是“散列”还是“哈希”,这都是中文翻译的差别,英文其实就是“Hash”。所以,我们常听到有人把“散列表”叫作“哈希表”“Hash 表”,把“哈希算法”叫作“Hash 算法”或者“散列算法”。那到底什么是哈希算法呢?
将任意长度的二进制值串映射为固定长度的二进制值串,这个映射的规则就是哈希算法,而通过原始数据映射之后得到的二进制值串就是哈希值。但是,要想设计一个优秀的哈希算法并不容易,根据我的经验,我总结了需要满足的几点要求:

  1. 从哈希值不能反向推导出原始数据(所以哈希算法也叫单向哈希算法);
  2. 对输入数据非常敏感,哪怕原始数据只修改了一个 Bit,最后得到的哈希值也大不相同;
  3. 散列冲突的概率要很小,对于不同的原始数据,哈希值相同的概率非常小;
  4. 哈希算法的执行效率要尽量高效,针对较长的文本,也能快速地计算出哈希值。

我拿 MD5 这种哈希算法来具体说明一下。我们分别对“今天我来讲哈希算法”和“jiajia”这两个文本,计算 MD5 哈希值,得到两串看起来毫无规律的字符串(MD5 的哈希值是 128 位的 Bit 长度,为了方便表示,我把它们转化成了 16 进制编码)。可以看出来,无论要哈希的文本有多长、多短,通过 MD5 哈希之后,得到的哈希值的长度都是相同的,而且得到的哈希值看起来像一堆随机数,完全没有规律。

MD5("今天我来讲哈希算法") = bb4767201ad42c74e650c1b6c03d78fa
MD5("jiajia") = cd611a31ea969b908932d44d126d195b

通过哈希算法得到的哈希值,很难反向推导出原始数据。比如上面的例子中,我们就很难通过哈希值“a1fb91ac128e6aa37fe42c663971ac3d”反推出对应的文本“我今天讲哈希算法”。
哈希算法要处理的文本可能是各种各样的。对于非常长的文本,比如,我们把今天这篇包含 4000 多个汉字的文章,用 MD5 计算哈希值,用不了 1ms 的时间。
哈希算法的应用非常非常多,我选了最常见的七个,分别是安全加密、唯一标识、数据校验、散列函数、负载均衡、数据分片、分布式存储。这节我们先来看前四个应用。

应用一:安全加密

说到哈希算法的应用,最先想到的应该就是安全加密。最常用于加密的哈希算法是 MD5(MD5 Message-Digest Algorithm,MD5 消息摘要算法)和 SHA(Secure Hash Algorithm,安全散列算法)。除了这两个之外,当然还有很多其他加密算法,比如 DES(Data Encryption Standard,数据加密标准)、AES(Advanced Encryption Standard,高级加密标准)。

前面我讲到的哈希算法四点要求,对用于加密的哈希算法来说,有两点格外重要。第一点是很难根据哈希值反向推导出原始数据,第二点是散列冲突的概率要很小。第一点很好理解,加密的目的就是防止原始数据泄露,所以很难通过哈希值反向推导原始数据,这是一个最基本的要求。所以我着重讲一下第二点。实际上,不管是什么哈希算法,我们只能尽量减少碰撞冲突的概率,理论上是没办法做到完全不冲突的。
为什么哈希算法无法做到零冲突?我们知道,哈希算法产生的哈希值的长度是固定且有限的。比如前面举的 MD5 的例子,哈希值是固定的 128 位二进制串,能表示的数据是有限的,最多能表示 2^128 个数据,而我们要哈希的数据是无穷的。基于鸽巢原理,如果我们对 2^128+1 个数据求哈希值,就必然会存在哈希值相同的情况。这里你应该能想到,一般情况下,哈希值越长的哈希算法,散列冲突的概率越低。

2^128=340282366920938463463374607431768211456

不过,即便哈希算法存在散列冲突的情况,但是因为哈希值的范围很大,冲突的概率极低,所以相对来说还是很难破解的。像 MD5,有 2^128 个不同的哈希值,这个数据已经是一个天文数字了,所以散列冲突的概率要小于 1/2^128。如果我们拿到一个 MD5 哈希值,希望通过毫无规律的穷举的方法,找到跟这个 MD5 值相同的另一个数据,那耗费的时间应该是个天文数字。所以,即便哈希算法存在冲突,但是在有限的时间和资源下,哈希算法还是很难被破解的。
除此之外,没有绝对安全的加密。越复杂、越难破解的加密算法,需要的计算时间也越长。比如 SHA-256 比 SHA-1 要更复杂、更安全,相应的计算时间就会比较长。密码学界也一直致力于找到一种快速并且很难被破解的哈希算法。

应用二:唯一标识

如果要在海量的图库中,搜索一张图是否存在,。那我们该如何搜索呢?
我们可以给每一个图片取一个唯一标识,或者说信息摘要。比如,我们可以从图片的二进制码串开头取 100 个字节,从中间取 100 个字节,从最后再取 100 个字节,然后将这 300 个字节放到一块,通过哈希算法(比如 MD5),得到一个哈希字符串,用它作为图片的唯一标识。通过这个唯一标识来判定图片是否在图库中,这样就可以减少很多工作量。
如果还想继续提高效率,我们可以把每个图片的唯一标识,和相应的图片文件在图库中的路径信息,都存储在散列表中。当要查看某个图片是不是在图库中的时候,我们先通过哈希算法对这个图片取唯一标识,然后在散列表中查找是否存在这个唯一标识。如果不存在,那就说明这个图片不在图库中;如果存在,我们再通过散列表中存储的文件路径,获取到这个已经存在的图片,跟现在要插入的图片做全量的比对,看是否完全一样。如果一样,就说明已经存在;如果不一样,说明两张图片尽管唯一标识相同,但是并不是相同的图片。

应用三:数据校验

BT 下载的原理是基于 P2P 协议的。我们从多个机器上并行下载一个 2GB 的电影,这个电影文件可能会被分割成很多文件块(比如可以分成 100 块,每块大约 20MB)。等所有的文件块都下载完成之后,再组装成一个完整的电影文件就行了。
我们知道,网络传输是不安全的,下载的文件块有可能是被宿主机器恶意修改过的,又或者下载过程中出现了错误,所以下载的文件块可能不是完整的。如果我们没有能力检测这种恶意修改或者文件下载出错,就会导致最终合并后的电影无法观看,甚至导致电脑中毒。
现在的问题是,如何来校验文件块的安全、正确、完整呢?我来说其中的一种思路。我们通过哈希算法,对 100 个文件块分别取哈希值,并且保存在种子文件中。我们在前面讲过,哈希算法有一个特点,对数据很敏感。只要文件块的内容有一丁点儿的改变,最后计算出的哈希值就会完全不同。所以,当文件块下载完成之后,我们可以通过相同的哈希算法,对下载好的文件块逐一求哈希值,然后跟种子文件中保存的哈希值比对。如果不同,说明这个文件块不完整或者被篡改了,需要再重新从其他宿主机器上下载这个文件块。

散列函数

散列函数也是哈希算法的一种应用。
散列函数是设计一个散列表的关键。它直接决定了散列冲突的概率和散列表的性能。不过,相对哈希算法的其他应用,散列函数对于散列算法冲突的要求要低很多。即便出现个别散列冲突,只要不是过于严重,我们都可以通过开放寻址法或者链表法解决。
不仅如此,散列函数对于散列算法计算得到的值,是否能反向解密也并不关心。散列函数中用到的散列算法,更加关注散列后的值是否能平均分布,也就是,一组数据是否能均匀地散列在各个槽中。除此之外,散列函数执行的快慢,也会影响散列表的性能,所以,散列函数用的散列算法一般都比较简单,比较追求效率。

解答开篇

我们可以通过哈希算法,对用户密码进行加密之后再存储,不过最好选择相对安全的加密算法,比如 SHA 等(因为 MD5 已经号称被破解了)。不过仅仅这样加密之后存储就万事大吉了吗?
字典攻击你听说过吗?如果用户信息被“脱库”,黑客虽然拿到是加密之后的密文,但可以通过“猜”的方式来破解密码,这是因为,有些用户的密码太简单。比如很多人习惯用 00000、123456 这样的简单数字组合做密码,很容易就被猜中。
那我们就需要维护一个常用密码的字典表,把字典中的每个密码用哈希算法计算哈希值,然后拿哈希值跟脱库后的密文比对。如果相同,基本上就可以认为,这个加密之后的密码对应的明文就是字典中的这个密码。针对字典攻击,我们可以引入一个盐(salt),跟用户的密码组合在一起,增加密码的复杂度。我们拿组合之后的字符串来做哈希算法加密,将它存储到数据库中,进一步增加破解的难度。不过我这里想多说一句,我认为安全和攻击是一种博弈关系,不存在绝对的安全。所有的安全措施,只是增加攻击的成本而已。

内容小节

今天的内容比较偏实战,我讲到了哈希算法的四个应用场景。我带你来回顾一下。
第一个应用是唯一标识,哈希算法可以对大数据做信息摘要,通过一个较短的二进制编码来表示很大的数据。
第二个应用是用于校验数据的完整性和正确性。
第三个应用是安全加密,我们讲到任何哈希算法都会出现散列冲突,但是这个冲突概率非常小。越是复杂哈希算法越难破解,但同样计算时间也就越长。所以,选择哈希算法的时候,要权衡安全性和计算时间来决定用哪种哈希算法。
第四个应用是散列函数,这个我们前面讲散列表的时候已经详细地讲过,它对哈希算法的要求非常特别,更加看重的是散列的平均性和哈希算法的执行效率。


http://www.kler.cn/a/134420.html

相关文章:

  • 【Hugging Face】下载开源大模型步骤
  • Python爬虫(5) --爬取网页视频
  • 利用EXCEL进行XXE攻击
  • 数字化时代,传统代理模式的变革之路
  • 从 SQL 语句到数据库操作
  • FFmpeg硬件解码
  • 实用技巧:在C和cURL中设置代理服务器爬取www.ifeng.com视频
  • JAXB的XmlElement注解
  • 如何通过算法模型进行数据预测
  • 浏览器内置NoSQL数据库IndexedDB
  • Tensorflow2.0:CNN、ResNet实现MNIST分类识别
  • 求二叉树的高度(可运行)
  • buildadmin+tp8表格操作(3)----表头上方按钮绑定事件处理,实现功能(选中或取消指定行)
  • 互联网摸鱼日报(2023-11-20)
  • wpf devexpress post 更改数据库
  • kafka分布式安装部署
  • 【微信小程序篇】- 组件
  • 算法设计与分析复习--贪心(一)
  • 特效!视频里的特效在哪制作——Adobe After Effects
  • java智慧校园信息管理系统源码带微信小程序
  • 【wp】2023第七届HECTF信息安全挑战赛 Web
  • 什么是Selenium?如何使用Selenium进行自动化测试?
  • 初刷leetcode题目(4)——数据结构与算法
  • C# Array和ArrayList有什么区别
  • WPF拖拽相关的类
  • 详解Java设计模式之职责链模式