当前位置: 首页 > article >正文

【计算机视觉】24-Object Detection

文章目录

  • 24-Object Detection
    • 1. Introduction
    • 2. Methods
      • 2.1 Sliding Window
      • 2.2 R-CNN: Region-Based CNN
      • 2.3 Fast R-CNN
      • 2.4 Faster R-CNN: Learnable Region Proposals
      • 2.5 Results of objects detection
    • 3. Summary
    • Reference

24-Object Detection

1. Introduction

  1. Task Definition

    Input: Single RGB Image

    Output: A set of detected objects;

    For each object predict:

    • Category label (from fixed, known set of categories)

    • Bounding box(four numbers: x, y, width, height)

  2. Challenges

    • Multiple outputs: Need to output variable numbers of objects per image
    • Multiple types of output: Need to predict ”what” (category label) as well as “where” (bounding box)
    • Large images: Classification works at 224x224; need higher resolution for detection, often ~800x600
  3. Detecting a single object

    image-20231120145632741

    With two branches, outputting label, and box

    Problem: Images can have more than one object! And if we use multiple single object detection, it will decrease the efficiency.

2. Methods

2.1 Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as an object or background:

image-20231120150748738

Problem: Need too many calculations

  • Consider an image of size H*W and a box of size h*w
  • Total possible boxes: ∑ h = 1 H ∑ w = 1 W ( W − w + 1 ) ( H − h + 1 ) = H ( H + 1 ) 2 W ( W + 1 ) 2 \sum_{h=1}^{H}\sum_{w=1}^{W}(W-w+1)(H-h+1)=\frac{H(H+1)}{2}\frac{W(W+1)}{2} h=1Hw=1W(Ww+1)(Hh+1)=2H(H+1)2W(W+1)
  • 800 x 600 image has ~58M boxes! No way we can evaluate them all.

2.2 R-CNN: Region-Based CNN

  1. Region Proposals(Selective Search)

    Selective Search is a region proposal algorithm used in object detection. It is based on computing hierarchical grouping of similar regions based on color, texture, size and shape compatibility.

    Selective Search starts by over-segmenting the image based on intensity of the pixels using a graph-based segmentation method by Felzenszwalb and Huttenlocher.

    image-20231120213007261

    Selective Search algorithm takes these oversegments as initial input and performs the following steps

    1. Add all bounding boxes corresponding to segmented parts to the list of regional proposals
    2. Group adjacent segments based on similarity
    3. Go to step 1

    At each iteration, larger segments are formed and added to the list of region proposals. Hence we create region proposals from smaller segments to larger segments in a bottom-up approach.

    As for the calculation of similarity measures based on color, texture, size and shape compatibility, please refer to Selective Search for Object Detection (C++ / Python) | LearnOpenCV

  2. Architecture of the network

    image-20231120214110598

    On two thousand selected regions, we narrow them down to the size required for classification, and after passing through the convolutional network, we output the category along with the box offset

  3. Steps

    1. Run region proposal method to compute ~2000 region proposals
    2. Resize each region to 224x224 and run independently through CNN to predict class scores and bbox transform
    3. Use scores to select a subset of region proposals to output (Many choices here: threshold on background, or per-category? Or take top K proposals per image?)
    4. Compare with ground-truth boxes
  4. Details(Focus on step3 and 4)

    1. Intersection over Union (IoU)
      I o U = Area of Intersection Area of Union IoU=\frac{\color{yellow}{\text{Area of Intersection}}}{\color{purple}{\text{Area of Union}}} IoU=Area of UnionArea of Intersection
      在这里插入图片描述

    2. Non-Max Suppression (NMS)

      • Select next highest-scoring box

      • Eliminate lower-scoring boxes(Comparing the highest-scoring box to all the others ) with IoU > threshold (e.g. 0.7)

      • If any boxes remain, GOTO 1

      Problem: NMS may eliminate ”good” boxes when objects are highly overlapping:

在这里插入图片描述

  1. Mean Average Precision (mAP)

    Use the gif to understand it(but I only have the final image):

在这里插入图片描述 For example, the mAP in COCO dataset is 0.4.

  1. Problem: Very slow! Need to do ~2k forward passes for each image!

    Solution: Run CNN before warping!

2.3 Fast R-CNN

  1. Architecture:

    image-20231120151757798
    • Most of the computation happens in the backbone network; this saves work for overlapping region proposals

    • Per-Region network is relatively lightweight

  2. The concrete architecture in Alexnet and Resnet:

    image-20231120152141617 image-20231120152156583
  3. Details:

    How to crop features?

    image-20231120222841764

    In this process, there are two errors:

    img

    如下图,假设输入图像经过一系列卷积层下采样32倍后输出的特征图大小为8x8,现有一 RoI 的左上角和右下角坐标(x, y 形式)分别为(0, 100) 和 (198, 224),映射至特征图上后坐标变为(0, 100 / 32)和(198 / 32,224 / 32),由于像素点是离散的,因此向下取整后最终坐标为(0, 3)和(6, 7),这里产生了第一次量化误差。

    假设最终需要将 RoI 变为固定的2x2大小,那么将 RoI 平均划分为2x2个区域,每个区域长宽分别为 (6 - 0 + 1) / 2 和 (7 - 3 + 1) / 2 即 3.5 和 2.5,同样,由于像素点是离散的,因此有些区域的长取3,另一些取4,而有些区域的宽取2,另一些取3,这里产生了第二次量化误差。

  4. RoI Align in Mask R-CNN

在这里插入图片描述

Notice: RoI Align needs to set a hyperparameter to represent the number of sampling points in each region, which is usually 4.

  1. Speed

    It has an enormous increase from R-CNN. But we can find that region proposals costs lots of time.

2.4 Faster R-CNN: Learnable Region Proposals

  1. Architecture:

    Insert Region Proposal Network (RPN) to predict proposals from feature
    在这里插入图片描述

  2. Details:

在这里插入图片描述

At each point, predict whether the corresponding anchor contains an object. And we use logistic regression to express the error. predict scores with conv layer

  1. Evaluation

在这里插入图片描述

  1. Improvement

    Faster R-CNN is a Two-stage object detector:

    But we want to design the structure of end to end, eliminating the second stage. So we change the function of region proposal network to predict the class label.
    在这里插入图片描述

2.5 Results of objects detection

在这里插入图片描述

  • Two-stage method (Faster R-CNN) gets the best accuracy but are slower.
  • Single-stage methods (SSD) are much faster but don’t perform as well
  • Bigger backbones improve performance, but are slower
  • Diminishing returns for slower methods

在这里插入图片描述

These results are a few years old …since then GPUs have gotten faster, and we’ve improved performance with many tricks:

  • Train longer!
  • Multiscale backbone: Feature
    Pyramid Networks
  • Better backbone: ResNeXt
  • Single-Stage methods have improved
  • Very big models work better
  • Test-time augmentation pushes
    numbers up
  • Big ensembles, more data, etc

3. Summary

Reference

[1] RoI Pooling 系列方法介绍(文末附源码) - 知乎 (zhihu.com)

[2] Selective Search for Object Detection (C++ / Python) | LearnOpenCV


http://www.kler.cn/a/135505.html

相关文章:

  • 将python下载的依赖包传到没网的服务器
  • srs http-flv处理过程
  • Android 开发指南:初学者入门
  • 把握鸿蒙生态崛起的机遇:开发者视角的探讨
  • thinkphp自定义命令行+宝塔面板Shell脚本实现定时任务
  • 调整TCP参数, 优化网络性能
  • Django 路由配置(二)
  • ESP32-BLE基础知识
  • 多态语法详解
  • URAT串口通信协议
  • 05_常用API
  • MIB 6.1810操作系统实验:准备工作(Tools Used in 6.1810)
  • Flink(七)【输出算子(Sink)】
  • opencv(5): 滤波器
  • 四旋翼无人机的飞行原理--【其利天下分享】
  • ES6中实现继承
  • 基于变形卷积和注意机制的带钢表面缺陷快速检测网络DCAM-Net(论文阅读笔记)
  • 开源与闭源软件的辩论:对大模型技术发展的影响
  • 基于非洲秃鹫算法优化概率神经网络PNN的分类预测 - 附代码
  • 常见的面试算法题:阶乘、回文、斐波那契数列
  • 【数据结构】树与二叉树(廿一):树和森林的遍历——先根遍历(递归算法PreOrder、非递归算法NPO)
  • Redis内存满了会宕机吗
  • 【Python百宝箱】掌握Python Web开发三剑客:Flask、Django、FastAPI一网打尽
  • 【Django-DRF用法】多年积累md笔记,第(4)篇:Django-DRF反序列化详解
  • Ubuntu 18.04/20.04 LTS 操作系统设置静态DNS
  • Hive常见的面试题(十二道)