当前位置: 首页 > article >正文

Python实现FA萤火虫优化算法优化循环神经网络分类模型(LSTM分类算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

萤火虫算法(Fire-fly algorithm,FA)由剑桥大学Yang于2009年提出 , 作为最新的群智能优化算法之一,该算法具有更好的收敛速度和收敛精度,且易于工程实现等优点。

本项目通过FA萤火虫优化算法优化循环神经网络分类模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

   

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码:  

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:    

4.探索性数据分析

4.1 y变量柱状图

用Matplotlib工具的plot()方法绘制柱状图:

4.2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4.3 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

5.3 数据样本增维

数据样本增加维度后的数据形状:

  

6.构建FA萤火虫优化算法优化LSTM分类模型

主要使用FA萤火虫优化算法优化LSTM分类算法,用于目标分类。

6.1 FA萤火虫优化算法寻找最优的参数值   

最优参数:

  

6.2 最优参数值构建模型

编号

模型名称

参数

1

LSTM分类模型

units=best_units

2

epochs=best_epochs

6.3 最优参数模型摘要信息

6.4 最优参数模型网络结构

6.5 最优参数模型训练集测试集损失和准确率曲线图

7.模型评估

7.1 评估指标及结果

评估指标主要包括准确率、查准率、查全率、F1分值等等。

模型名称

指标名称

指标值

测试集

LSTM分类模型

准确率

0.8350

查准率

0.8533

查全率

0.801

F1分值

0.8263

从上表可以看出,F1分值为0.8350,说明模型效果较好。

关键代码如下:

7.2 分类报告

   

从上图可以看出,分类为0的F1分值为0.84;分类为1的F1分值为0.83。

7.3 混淆矩阵

从上图可以看出,实际为0预测不为0的 有27个样本;实际为1预测不为1的 有39个样本,整体预测准确率良好。  

8.结论与展望

综上所述,本文采用了FA萤火虫优化算法寻找循环神经网络LSTM算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:

链接:https://pan.baidu.com/s/18fd5YEIMAAiuBWnzuC7BBQ 
提取码:3uwj


更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客



http://www.kler.cn/a/147077.html

相关文章:

  • 【Linux学习】【Ubuntu入门】1-4 ubuntu终端操作与shell命令1
  • 基于单片机智能温室大棚监测系统
  • Linux dpkg命令详解
  • Halcon HImage 与 Qt QImage 的相互转换(修订版)
  • 调用门提权
  • SpringBoot实现WebSocket
  • 智慧工厂人员定位系统源码,融合位置物联网、GIS可视化等技术,实现对人员、物资精确定位管理
  • 【网络安全】-常见的网站攻击方式详解
  • Mysql的分库分表
  • 诺威信,浪潮云,微众区块链
  • 单片机学习4——中断的概念
  • 使用 Java 来读取 Excel 文件,检查每一行中的 URL,并将不符合条件的行标记为红色
  • 数据结构 / 顺序表操作 / 顺序表尾部删除
  • C语言进阶之笔试题详解(1)
  • 基于python的NBA球员数据可视化分析的设计与实现
  • EFCore乐观并发
  • uniapp高德、百度、腾讯地图配置 SHA1
  • C语言第三十四弹--矩形逆置
  • 小航助学题库蓝桥杯题库stem选拔赛(21年3月)(含题库教师学生账号)
  • ElasticSearch之cat anomaly detectors API
  • nodejs+vue+elementui足球篮球联赛系统
  • 【C++】POCO学习总结(六):线程、线程池、同步
  • iview table 默认排序字段不高亮解决办法
  • Elasticsearch:什么是非结构化数据?
  • css实现图片绕中心旋转,鼠标悬浮按钮炫酷展示
  • android 9 adb安装过程学习(三)