当前位置: 首页 > article >正文

逻辑回归与正则化 逻辑回归、激活函数及其代价函数

逻辑回归、激活函数及其代价函数

线性回归的可行性

对分类算法,其输出结果y只有两种结果{0,1},分别表示负类和正类,代表没有目标和有目标。
在这种情况下,如果用传统的方法以线性拟合 ( h θ ( x ) = θ T X ) (h_θ (x)=θ^T X) hθ(x)=θTX对于得到的函数应当对y设置阈值a,高于a为一类,低于a为一类

对于分类方法,这种拟合的方式极易受到分散的数据集的影响而导致损失函数的变化,以至于对于特定的损失函数,其阈值的设定十分困难。

除此之外, h θ ( x ) h_θ (x) hθ(x)(在分类算法中称为分类器)的输出值很可能非常大或者非常小,并不与{0,1}完全相符

假设表示

基于上述情况,要使分类器的输出在[0,1]之间,可以采用假设表示的方法。
h θ ( x ) = g ( θ T x ) h_θ (x)=g(θ^T x) hθ(x)=g(θTx)
其中 g ( z ) = 1 ( 1 + e − z ) g(z)=\frac{1}{(1+e^{−z} )} g(z)=(1+ez)1, 称为逻辑函数(Sigmoid function,又称为激活函数,生物学上的S型曲线)
h θ ( x ) = 1 ( 1 + e − θ T X ) h_θ (x)=\frac{1}{(1+e^{−θ^T X} )} hθ(x)=(1+eθTX)1

其两条渐近线分别为h(x)=0和h(x)=1

在分类条件下,最终的输出结果是:
h θ ( x ) = P ( y = 1 │ x , θ ) h_θ (x)=P(y=1│x,θ) hθ(x)=P(y=1│x,θ)

其代表在给定x的条件下 其y=1的概率

P ( y = 1 │ x , θ ) + P ( y = 0 │ x , θ ) = 1 P(y=1│x,θ)+P(y=0│x,θ)=1 P(y=1│x,θ)+P(y=0│x,θ)=1

决策边界( Decision boundary)

对假设函数设定阈值 h ( x ) = 0.5 h(x)=0.5 h(x)=0.5
h ( x ) ≥ 0.5 h(x)≥0.5 h(x)0.5 时,输出结果y=1.

根据假设函数的性质,当 x ≥ 0 时, x≥0时, x0时,h(x)≥0.5
θ T x θ^T x θTx替换x,则当 θ T x ≥ 0 θ^T x≥0 θTx0时, h ( x ) ≥ 0.5 , y = 1 h(x)≥0.5,y=1 h(x)0.5y=1

解出 θ T x ≥ 0 θ^T x≥0 θTx0,其答案将会是一个在每一个 x i x_i xi轴上都有的不等式函数。

这个不等式函数将整个空间分成了y=1 和 y=0的两个部分,称之为决策边界

激活函数的代价函数

在线性回归中的代价函数:
J ( θ ) = 1 m ∑ i = 1 m 1 2 ( h θ ( x ( i ) ) − y ( i ) ) 2 J(θ)=\frac{1}{m}∑_{i=1}^m \frac{1}{2} (h_θ (x^{(i)} )−y^{(i)} )^2 J(θ)=m1i=1m21(hθ(x(i))y(i))2

C o s t ( h θ ( x ) , y ) = 1 2 ( h θ ( x ( i ) ) − y ( i ) ) 2 Cost(hθ (x),y)=\frac{1}{2}(h_θ (x^{(i)} )−y^{(i)} )^2 Costhθ(x)y=21(hθ(x(i))y(i))2
Cost是一个非凹函数,有许多的局部最小值,不利于使用梯度下降法。对于分类算法,设置其代价函数为:
J ( θ ) = − 1 m ∑ i = 1 m [ y ( i ) l o g ( h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) ∗ l o g ( 1 − h θ ( x ( i ) ) ) ] J(θ)=-\frac{1}{m}∑_{i=1}^m [y^{(i)}log(h_θ (x^{(i)}) )−(1-y^{(i)})*log(1-h_θ (x^{(i)}))] J(θ)=m1i=1m[y(i)log(hθ(x(i)))(1y(i))log(1hθ(x(i)))]

对其化简:
C o s t ( h θ ( x ) , y ) = − y l o g ( h θ ( x ) ) − ( ( 1 − y ) l o g ⁡ ( 1 − h θ ( x ) ) ) Cost(h_θ (x),y)=−ylog(h_θ (x))−((1−y)log⁡(1−h_θ (x))) Costhθ(x),y=ylog(hθ(x))((1y)log(1hθ(x)))
检验:
y = 1 y=1 y=1时, − l o g ⁡ ( h θ ( x ) ) −log⁡(h_θ (x)) log(hθ(x))
y = 0 y=0 y=0时, − l o g ⁡ ( 1 − h θ ( x ) ) −log⁡(1−h_θ (x)) log(1hθ(x))

那么代价函数可以写成:
J ( θ ) = − 1 m [ ∑ i = 1 m y ( i ) l o g ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) l o g ( 1 − h θ ( x ( i ) ) ) ] J(θ)=-\frac{1}{m}[∑_{i=1}^m y^{(i)} log⁡(h_θ(x^{(i)} ))+(1−y^{(i)}) log(1−h_θ (x^{(i)}))] J(θ)=m1[i=1my(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))]

对于代价函数,采用梯度下降算法求θ的最小值:
θ j ≔ θ j − α ∂ J ( θ ) ∂ θ j θ_j≔θ_j−α\frac{∂J(θ)}{∂θ_j} θj:=θjαθjJ(θ)
代入梯度:
θ j ≔ θ j − α ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j i θ_j≔θ_j−α∑_{i=1}^m(h_θ (x^{(i)} )−y^{(i)} ) x_j^i θj:=θjαi=1m(hθ(x(i))y(i))xji


http://www.kler.cn/a/154983.html

相关文章:

  • Mybatis配置文件的增删改查功能
  • 使用 Vision 插件让 GitHub Copilot 识图问答
  • 企业一站式管理系统odoo的研究——PLM插件的搭建
  • 动态规划问题-删除并获得点数(Java实现)
  • 【JAVA基础】JVM是什么?
  • 【PHP】ThinkPHP基础
  • 2024年美国大学生数学建模竞赛(MCM/ICM)论文写作方法指导
  • 基于PHP的高中生物学习平台
  • prometheus|云原生|kubernetes内部安装prometheus
  • 贝锐向日葵与华为达成合作,启动鸿蒙原生应用开发
  • WPF 简单绘制矩形
  • 如何在没有备份的情况下从 Android 手机恢复已删除的数据
  • LLM推理部署(四):一个用于训练、部署和评估基于大型语言模型的聊天机器人的开放平台FastChat
  • 常见的AI安全风险(数据投毒、后门攻击、对抗样本攻击、模型窃取攻击等)
  • js中setinterval怎么用?怎么才能让setinterval停下来?
  • 微信小程序实现watch监听数值改变的效果
  • Kubernetes(K8s)_16_CSI
  • 时序预测 | Python实现LSTM长短期记忆神经网络时间序列预测(多图,多指标)
  • C#基础学习--命名空间和程序集
  • C语言之实现贪吃蛇小游戏篇(2)
  • Flink(九)【时间语义与水位线】
  • 开源播放器GSYVideoPlayer + ViewPager2 源码解析
  • 12.1 二叉树简单题
  • Redis--12--Redis分布式锁的实现
  • 【双指针】283. 移动零
  • 内网穿透工具获取一个公网ip