当前位置: 首页 > article >正文

数学建模之典型相关分析

发现新天地,欢迎访问

介绍

典型相关分析(Canonical Correlation analysis)研究两组变量(每组变量中都可能有多个指标)之间相关关系的一种多元统计方法。它能够揭示出两组变量之间的内在联系。

例子

我们要探究观众和业内人士对于一些电视节目的观点有什么样的关系呢?观众评分来自低学历(led)、高学历(hed)和网络(net)调查三种,它们形成第一组变量;而业内人士分评分来自包括演员和导演在内的艺术家(arti)、发行(com)与业内各部门主管(man)三种,形成第二组变量。

file

直接对这些变量的相关进行两两分析,很难得到关于这两组变量(观众和业内人士)之间关系的一个清楚的印象。

解决思路:

把多个变量与多个变量之间的相关化为两个具有代表性的变量之间的相关。代表:能较为综合、全面的衡量所在组的内在规律。一组变量最简单的综合形式就是该组变量的线性组合。

典型相关分析的定义

典型相关分析由Hotelling提出,其基本思想和主成分分析非常相似。

  • 首先在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数;

  • 然后选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对;

  • 如此继续下去,直到两组变量之间的相关性被提取完毕为止。(假设性检验)

被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数典型相关系数度量了这两组变量之间联系的强度。

思路

file

注意:综合变量的组数是不确定的,如果第一组就能代表原样本数据大部分的信息那么一组就足够了。假设第一组反映的信息不够,我们就需要找第二组了并目为了让第二组的信息更有效,需要保证两组的信息不相关

file

典型相关系数的分析步骤

  • 数据的分布有假设:两组数据服从联合正态分布。

file


  • 首先要对两组变量的相关性进行检验(构造似然比统计量)。p值小于0.05(0.1)表示在95%(90%)的置信水平下拒绝原假设,即认为两组变量有关。

file

  • 确定典型相关变量的个数(直接看典型相关系数对应的P值即可)

file

  • 利用标准化后的典型相关变量分析问题

file

  • 进行典型载荷分析

file

  • 计算前r个典型变量对样本总方差的贡献

file

利用spss进行操作

  • 导入数据

file

  • 分析

file

  • 分组

file

  • 得到结果

file

个人公众号搜索:TinyCr

本文由博客一文多发平台 OpenWrite 发布!


http://www.kler.cn/a/154993.html

相关文章:

  • Spring Boot Actuator 集成 Micrometer(官网文档解读)
  • 【0x0012】HCI_Delete_Stored_Link_Key命令详解
  • vscode下poetry管理项目的debug配置
  • Linux 内核学习 3b - 和copilot 讨论pci设备的物理地址在内核空间和用户空间映射到虚拟地址的区别
  • 用AI生成PPT,办公效率提升新方式
  • docker日志保留策略设置
  • Redis--10--Pipeline
  • 乱序学机器学习——主成分分析法PCA
  • node.js express路由和中间件
  • c++ 写成.h .cpp main.cpp 多文件形式
  • Gradio库的安装和使用教程
  • 使用Visual Studio创建第一个C代码工程
  • 二维数组处理(一)
  • 基于windows系统使用Python对于pc当前的所有窗口的相关操作接口
  • 部署springboot项目到GKE(Google Kubernetes Engine)
  • 逻辑回归与正则化 逻辑回归、激活函数及其代价函数
  • 2024年美国大学生数学建模竞赛(MCM/ICM)论文写作方法指导
  • 基于PHP的高中生物学习平台
  • prometheus|云原生|kubernetes内部安装prometheus
  • 贝锐向日葵与华为达成合作,启动鸿蒙原生应用开发
  • WPF 简单绘制矩形
  • 如何在没有备份的情况下从 Android 手机恢复已删除的数据
  • LLM推理部署(四):一个用于训练、部署和评估基于大型语言模型的聊天机器人的开放平台FastChat
  • 常见的AI安全风险(数据投毒、后门攻击、对抗样本攻击、模型窃取攻击等)
  • js中setinterval怎么用?怎么才能让setinterval停下来?
  • 微信小程序实现watch监听数值改变的效果