当前位置: 首页 > article >正文

YOLOv7+姿态估计Pose+tensort部署加速

YOLOv7-Pose

YOLOv7是一种高效的目标检测算法,用于实时物体检测。姿态估计Pose是一种用于识别和跟踪人体关键点的技术。TensorRT是一个针对深度学习推理任务进行加速的高性能推理引擎。

将YOLOv7和姿态估计Pose与TensorRT结合可以实现快速而准确的目标检测和姿态估计任务。首先,使用YOLOv7进行目标检测,它具有高效的网络结构和多尺度特征融合机制,能够在保持准确性的同时提高推理速度。然后,利用得到的目标框信息,将其输入到Pose模型中,进行姿态估计。Pose模型通过分析人体关键点来确定人体的姿态,例如头部、手臂、腿部等。

为了进一步提升推理速度,可以使用TensorRT进行加速。TensorRT利用深度学习模型中的并行计算、内存优化和精度调整等技术,对模型进行优化和推理加速。通过将YOLOv7和Pose模型转换为TensorRT可执行文件,可以充分利用GPU的计算能力,实现更快的推理速度。

总之,通过将YOLOv7和姿态估计Pose与TensorRT结合,可以实现高效的目标检测和姿态估计任务。这种部署加速方案不仅提高了推理速度,还保持了较高的准确性,适用于实时应用场景,如视频监控、人体行为分析等
在这里插入图片描述

实现YOLOv7:可训练的免费套件为实时目标检测设置了最新技术标准

YOLOv7-Pose的姿态估计是基于YOLO-Pose的。关键点标签采用MS COCO 2017数据集。

训练

使用预训练模型yolov7-w6-person.pt进行训练。训练命令如下:

python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train.py --data data/coco_kpts.yaml --cfg cfg/yolov7-w6-pose.yaml --weights weights/yolov7-w6-person.pt --batch-size 128 --img 960 --kpt-label --sync-bn --device 0,1,2,3,4,5,6,7 --name yolov7-w6-pose --hyp data/hyp.pose.yaml

部署

  1. 导出ONNX模型

运行以下命令生成onnx模型和引擎模型:

python models/export_onnx.py \
    --weights weights/yolov7-w6-pose.pt \
    --img-size 832 \
    --device 0 \
    --batch-size 1 \
    --simplify
  1. 导出TensorRT模型

使用脚本:

python models/export_TRT.py \
    --onnx weights/yolov7-w6-pose.onnx \
    --batch-size 1 \
    --device 1 \
    --fp16

或者使用trtexec:

trtexec \
    --onnx=weights/yolov7-w6-pose.onnx \
    --workspace=4096 \
    --saveEngine=weights/yolov7-w6-pose-FP16.engine \
    --fp16

推理

  1. PyTorch模型推理
python detect_multi_backend.py \
    --weights weights/yolov7-w6-pose.pt \
    --source data/images \
    --device 0 \
    --img-size 832 \
    --kpt-label
  1. ONNX模型推理
python detect_multi_backend.py \
    --weights weights/yolov7-w6-pose.onnx \
    --source data/images \
    --device 0 \
    --img-size 832 \
    --kpt-label
  1. TensorRT模型推理
python detect_multi_backend.py \
    --weights weights/yolov7-w6-pose.engine \
    --source data/images \
    --device 0 \
    --img-size 832 \
    --kpt-label

测试

使用yolov7-w6-pose.pt进行测试:

官方YOLOv7-pose和YOLO-Pose代码只在test.py中计算检测mAP。若要计算关键点mAP,需使用COCO API。在此仓库中实现的oks_iou矩阵计算加速了关键点mAP的计算。测试关键点mAP时,oks区域设置为0.6乘以ground truth box的区域。

  1. 测试PyTorch模型
python test_multi_backend.py \
    --weights weights/yolov7-w6-pose.pt \
    --data data/coco_kpts.yaml \
    --img-size 832 \
    --conf-thres 0.001 \
    --iou-thres 0.6 \
    --task val \
    --device 0 \
    --kpt-label
  1. 测试ONNX模型
python test_multi_backend.py \
    --weights weights/yolov7-w6-pose.onnx \
    --data data/custom_kpts.yaml \
    --img-size 832 \
    --conf-thres 0.001 \
    --iou-thres 0.6 \
    --task val \
    --device 0 \
    --kpt-label
  1. 测试TensorRT模型
python test_multi_backend.py \
    --weights weights/yolov7-w6-pose-FP16.engine \
    --data data/coco_kpts.yaml \
    --img-size 832 \
    --conf-thres 0.001 \
    --iou-thres 0.6 \
    --task val \
    --device 0 \
    --kpt-label

INT8校准

python models/export_TRT.py \
    --onnx weights/yolov7-w6-pose.onnx \
   

http://www.kler.cn/a/155617.html

相关文章:

  • 二叉搜索树(TreeMapTreeSet)
  • Reactor 模式在 Edis、Nginx 和 Netty 中的应用与高性能网络模式解析
  • CSS 合法颜色值
  • 项目实战--网页五子棋(游戏大厅)(3)
  • Rust Actix Web 项目实战教程 mysql redis swagger:构建用户管理系统
  • ChatGPT 写作系列
  • MDETR 论文报告
  • MySQL中的锁(简单)
  • thinkphp 判断当前页 导航条高亮等方法
  • Android 13 - Media框架(21)- ACodec(三)
  • selinux-policy-default(2:2.20231119-2)软件包内容详细介绍(5)
  • 【深度学习实验】图像处理(四):PIL——自定义图像数据增强操作(图像合成;图像融合(高斯掩码))
  • 链表算法总结
  • Apache Doris 整合 FLINK 、 Hudi 构建湖仓一体的联邦查询入门
  • 接口测试快速入门 以飞致云平台为例
  • Selenium Grid
  • OpenCV入门11——图像的分割与修复
  • Helix QAC 2023.3版本发布,新增对C++20的支持等多个功能,实现100%MISRA C++:2023®规则覆盖
  • centos7中通过kubeadmin安装k8s集群
  • 解决OSError: [Errno 28] No space left on device报错和搭建AIrtest无线配置手机集群
  • PyQt基础_007_ 按钮类控件QCombox
  • matplotilb画图
  • 数学字体 Mathematical fonts
  • 渗透测试学习day4
  • RedisTemplate的配置和讲解以及和StringRedisTemplate的区别
  • 分享一个国内可用的免费AI-GPT网站