回溯算法秒杀2
元素无重且不可复选
子集
class Solution {
List<List<Integer>> res = new LinkedList<>();
// 记录回溯算法的递归路径
LinkedList<Integer> track = new LinkedList<>();
// 主函数
public List<List<Integer>> subsets(int[] nums) {
backtrack(nums, 0);
return res;
}
// 回溯算法核心函数,遍历子集问题的回溯树
void backtrack(int[] nums, int start) {
// 前序位置,每个节点的值都是一个子集
res.add(new LinkedList<>(track));
// 回溯算法标准框架
for (int i = start; i < nums.length; i++) {
// 做选择
track.addLast(nums[i]);
// 通过 start 参数控制树枝的遍历,避免产生重复的子集
backtrack(nums, i + 1);
// 撤销选择
track.removeLast();
}
}
}
组合
给定两个整数 n
和 k
,返回范围 [1, n]
中所有可能的 k
个数的组合。
class Solution {
List<List<Integer>> res = new LinkedList<>();
// 记录回溯算法的递归路径
LinkedList<Integer> track = new LinkedList<>();
// 主函数
public List<List<Integer>> combine(int n, int k) {
backtrack(1, n, k);
return res;
}
void backtrack(int start, int n, int k) {
// base case
if (k == track.size()) {
// 遍历到了第 k 层,收集当前节点的值
res.add(new LinkedList<>(track));
return;
}
// 回溯算法标准框架
for (int i = start; i <= n; i++) {
// 选择
track.addLast(i);
// 通过 start 参数控制树枝的遍历,避免产生重复的子集
backtrack(i + 1, n, k);
// 撤销选择
track.removeLast();
}
}
}
全排列
class Solution {
List<List<Integer>> res = new LinkedList<>();
// 记录回溯算法的递归路径
LinkedList<Integer> track = new LinkedList<>();
// track 中的元素会被标记为 true
boolean[] used;
/* 主函数,输入一组不重复的数字,返回它们的全排列 */
public List<List<Integer>> permute(int[] nums) {
used = new boolean[nums.length];
backtrack(nums);
return res;
}
// 回溯算法核心函数
void backtrack(int[] nums) {
// base case,到达叶子节点
if (track.size() == nums.length) {
// 收集叶子节点上的值
res.add(new LinkedList(track));
return;
}
// 回溯算法标准框架
for (int i = 0; i < nums.length; i++) {
// 已经存在 track 中的元素,不能重复选择
if (used[i]) {
continue;
}
// 做选择
used[i] = true;
track.addLast(nums[i]);
// 进入下一层回溯树
backtrack(nums);
// 取消选择
track.removeLast();
used[i] = false;
}
}
}
综上,如果是子集/组合问题,则方法设置为backtrack(int[] nums,int start),且递归时使用backtrack(nums,i+1) 然而,如果是排列问题,则方法设置为backtrack(int[] nums)并且额外设置一个used数组来标记是否选择过,且递归时使用backtrack(nums)
元素可重不可复选
元素里面可能包含重复元素,但是只能选择一次
子集
class Solution {
List<List<Integer>> res = new LinkedList<>();
LinkedList<Integer> track = new LinkedList<>();
public List<List<Integer>> subsetsWithDup(int[] nums) {
// 先排序,让相同的元素靠在一起
Arrays.sort(nums);
backtrack(nums, 0);
return res;
}
void backtrack(int[] nums, int start) {
// 前序位置,每个节点的值都是一个子集
res.add(new LinkedList<>(track));
for (int i = start; i < nums.length; i++) {
// 剪枝逻辑,值相同的相邻树枝,只遍历第一条
if (i > start && nums[i] == nums[i - 1]) {
continue;
}
track.addLast(nums[i]);
backtrack(nums, i + 1);
track.removeLast();
}
}
}
对比前面的子集,这里添加了提前数组排序,且在循环时添加了剪枝环节
组合
class Solution {
List<List<Integer>> res = new LinkedList<>();
// 记录回溯的路径
LinkedList<Integer> track = new LinkedList<>();
// 记录 track 中的元素之和
int trackSum = 0;
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
if (candidates.length == 0) {
return res;
}
// 先排序,让相同的元素靠在一起
Arrays.sort(candidates);
backtrack(candidates, 0, target);
return res;
}
// 回溯算法主函数
void backtrack(int[] nums, int start, int target) {
// base case,达到目标和,找到符合条件的组合
if (trackSum == target) {
res.add(new LinkedList<>(track));
return;
}
// base case,超过目标和,直接结束
if (trackSum > target) {
return;
}
// 回溯算法标准框架
for (int i = start; i < nums.length; i++) {
// 剪枝逻辑,值相同的树枝,只遍历第一条
if (i > start && nums[i] == nums[i - 1]) {
continue;
}
// 做选择
track.add(nums[i]);
trackSum += nums[i];
// 递归遍历下一层回溯树
backtrack(nums, i + 1, target);
// 撤销选择
track.removeLast();
trackSum -= nums[i];
}
}
}
对比前面的组合,这里添加了提前数组排序,且在循环时添加了剪枝环节
全排列
class Solution {
List<List<Integer>> res = new LinkedList<>();
LinkedList<Integer> track = new LinkedList<>();
boolean[] used;
public List<List<Integer>> permuteUnique(int[] nums) {
// 先排序,让相同的元素靠在一起
Arrays.sort(nums);
used = new boolean[nums.length];
backtrack(nums);
return res;
}
void backtrack(int[] nums) {
if (track.size() == nums.length) {
res.add(new LinkedList(track));
return;
}
for (int i = 0; i < nums.length; i++) {
if (used[i]) {
continue;
}
// 新添加的剪枝逻辑,固定相同的元素在排列中的相对位置
if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]) {
continue;
}
track.add(nums[i]);
used[i] = true;
backtrack(nums);
track.removeLast();
used[i] = false;
}
}
}
对比前面的全排列,这里添加了提前数组排序,且在循环时添加了剪枝环节(特别地,剪枝条件需要加上!used[i-1])
元素不重可复选
数组里没有重复元素,但是可以重复选择
组合
class Solution {
List<List<Integer>> res = new LinkedList<>();
// 记录回溯的路径
LinkedList<Integer> track = new LinkedList<>();
// 记录 track 中的路径和
int trackSum = 0;
public List<List<Integer>> combinationSum(int[] candidates, int target) {
if (candidates.length == 0) {
return res;
}
backtrack(candidates, 0, target);
return res;
}
// 回溯算法主函数
void backtrack(int[] nums, int start, int target) {
// base case,找到目标和,记录结果
if (trackSum == target) {
res.add(new LinkedList<>(track));
return;
}
// base case,超过目标和,停止向下遍历
if (trackSum > target) {
return;
}
// 回溯算法标准框架
for (int i = start; i < nums.length; i++) {
// 选择 nums[i]
trackSum += nums[i];
track.add(nums[i]);
// 递归遍历下一层回溯树
// 同一元素可重复使用,注意参数
backtrack(nums, i, target);
// 撤销选择 nums[i]
trackSum -= nums[i];
track.removeLast();
}
}
}
与元素可重不可复选相比,在循环时改变一句即可backtrack(nums, i, target);
全排列
class Solution {
List<List<Integer>> res = new LinkedList<>();
LinkedList<Integer> track = new LinkedList<>();
public List<List<Integer>> permuteRepeat(int[] nums) {
backtrack(nums);
return res;
}
// 回溯算法核心函数
void backtrack(int[] nums) {
// base case,到达叶子节点
if (track.size() == nums.length) {
// 收集叶子节点上的值
res.add(new LinkedList(track));
return;
}
// 回溯算法标准框架
for (int i = 0; i < nums.length; i++) {
// 做选择
track.add(nums[i]);
// 进入下一层回溯树
backtrack(nums);
// 取消选择
track.removeLast();
}
}
}
与上述两种情况全排列相比,这里不用添加used数组标记是否使用过和剪枝环节和提前排序数组