当前位置: 首页 > article >正文

毕设:《基于hive的音乐数据分析系统的设计与实现》

文章目录

  • 环境启动
  • 一、爬取数据
    • 1.1、歌单信息
    • 1.2、每首歌前20条评论
    • 1.3、排行榜
  • 二、搭建环境
    • 1.1、搭建JAVA
    • 1.2、配置hadoop
    • 1.3、配置Hadoop环境:YARN
    • 1.4、MYSQL
    • 1.5、HIVE(数据仓库)
    • 1.6、Sqoop(关系数据库数据迁移)
  • 三、hadoop配置内存
  • 四、导入数据到hive


环境启动

启动hadoop图形化界面

cd /opt/server/hadoop-3.1.0/sbin/

./start-dfs.sh
./start-yarn.sh

# 或者
./start-all.sh

启动hive

hive

一、爬取数据

1.1、歌单信息

CREATE TABLE playlist (
    PlaylistID INT AUTO_INCREMENT PRIMARY KEY,
    Type VARCHAR(255),
    Title VARCHAR(255),
    PlayCount VARCHAR(255),
    Contributor VARCHAR(255)
);
# _*_ coding : utf-8 _*_
# @Time : 2023/11/15 10:26
# @Author : Laptoy
# @File : 01_playlist
# @Project : finalDesign
import requests
import time
from bs4 import BeautifulSoup
import pymysql

db_connection = pymysql.connect(
    host="localhost",
    user="root",
    password="root",
    database="music"
)
cursor = db_connection.cursor()

headers = {
    'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36'
}

types = ['华语', '欧美', '日语', '韩语', '粤语']

for type in types:
    # 按类型获取歌单
    for i in range(0, 1295, 35):
        url = 'https://music.163.com/discover/playlist/?cat=' + type + '&order=hot&limit=35&offset=' + str(i)
        response = requests.get(url=url, headers=headers)
        html = response.text
        soup = BeautifulSoup(html, 'html.parser')
        # 获取包含歌单详情页网址的标签
        ids = soup.select('.dec a')
        # 获取包含歌单索引页信息的标签
        lis = soup.select('#m-pl-container li')
        print(len(lis))
        print('类型', '标题', '播放量', '歌单贡献者', '歌单链接')
        for j in range(len(lis)):
            # 标准歌单类型
            type = type
            # 获取歌单标题,替换英文分割符
            title = ids[j]['title'].replace(',', ',')
            # 获取歌单播放量
            playCount = lis[j].select('.nb')[0].get_text()
            # 获取歌单贡献者名字
            contributor = lis[j].select('p')[1].select('a')[0].get_text()
            # 输出歌单索引页信息
            print(type, title, playCount, contributor)

            insert_query = "INSERT INTO playlist (Type, Title, PlayCount, Contributor) VALUES (%s, %s, %s, %s)"
            playlist_data = (type, title, playCount, contributor)
            cursor.execute(insert_query, playlist_data)
            db_connection.commit()

            time.sleep(0.1)
cursor.close()
db_connection.close()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


1.2、每首歌前20条评论

CREATE TABLE `comment`  (
  `song_id` varchar(20),
  `song_name` varchar(255),
  `comment` varchar(255),
  `nickname` varchar(50)
) ENGINE = InnoDB CHARACTER SET = utf8mb4 COLLATE = utf8mb4_unicode_ci ROW_FORMAT = Dynamic;
# _*_ coding : utf-8 _*_
# @Time : 2023/11/15 15:09
# @Author : Laptoy
# @File : ces
# @Project : finalDesign
import requests
from Crypto.Cipher import AES
from lxml import etree
from binascii import b2a_base64
import json
import time
import pymysql
from pymysql.converters import escape_string

headers = {
    'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36'
}
e = '010001'
f = '00e0b509f6259df8642dbc35662901477df22677ec152b5ff68ace615bb7b725152b3ab17a876aea8a5aa76d2e417629ec4ee341f56135fccf695280104e0312ecbda92557c93870114af6c9d05c4f7f0c3685b7a46bee255932575cce10b424d813cfe4875d3e82047b97ddef52741d546b8e289dc6935b3ece0462db0a22b8e7'

g = '0CoJUm6Qyw8W8jud'
# 随机值
i = 'vDIsXMJJZqADRVBP'


def get_163():
    # 热歌榜URL
    toplist_url = 'https://music.163.com/discover/toplist?id=3778678'

    response = requests.get(toplist_url, headers=headers)
    html = response.content.decode()
    html = etree.HTML(html)
    namelist = html.xpath("//div[@id='song-list-pre-cache']/ul[@class='f-hide']/li")
    # 可选择保存到文件
    # f = open('./wangyi_hotcomments.txt',mode='a',encoding='utf-8')
    for name in namelist:
        song_name = name.xpath('./a/text()')[0]
        song_id = name.xpath('./a/@href')[0].split('=')[1]
        content = get_hotConmments(song_id)
        print(song_name, song_id)
        save_mysql(song_id, song_name, content)
        # f.writelines(song_id+song_name)
        # f.write('\n')
        # f.write(str(content))
    # f.close()


def get_encSecKey():
    encSecKey = "516070c7404b42f34c24ef20b659add657c39e9c52125e9e9f7f5441b4381833a407e5ed302cac5d24beea1c1629b17ccb86e0d9d57f6508db5fb7a6df660089ac57b093d19421d386101676a1c8d1e312e099a3463f81fbe91f28211f9eccccfbfc64148fdd65e2b9f5fcf439a865b95fb656e36f75091957f0a1d39ca8ddd3"
    return encSecKey

def get_params(data):
    first = enconda_params(data, g)
    second = enconda_params(first, i)

    return second


# 加密params
def enconda_params(data, key):
    d = 16 - len(data) % 16
    data += chr(d) * d
    data = data.encode('utf-8')
    aes = AES.new(key=key.encode('utf-8'), IV='0102030405060708'.encode('utf-8'), mode=AES.MODE_CBC)
    bs = aes.encrypt(data)
    # b64解码
    params = b2a_base64(bs).decode('utf-8')
    # params = b64decode(bs)
    return params


def get_hotConmments(id):
    # print(id)
    # 提交的信息
    data = {
        'cursor': '-1',
        'offset': '0',
        'orderType': '1',
        'pageNo': '1',
        'pageSize': '20',
        'rid': f'R_SO_4_{id}',
        'threadId': f'R_SO_4_{id}'
    }
    post_data = {
        'params': get_params(json.dumps(data)),
        'encSecKey': get_encSecKey()
    }
    # 获取评论的URL
    song_url = 'https://music.163.com/weapi/comment/resource/comments/get?csrf_token=ce10dc34c626dc6aef3e07c86be16d70'

    response = requests.post(url=song_url, data=post_data, headers=headers)
    # time.sleep(1)
    json_dict = json.loads(response.content)
    # print(json_dict)
    hotcontent = {}
    for content in json_dict['data']['hotComments']:
        content_text = content['content']
        content_id = content['user']['nickname']
        hotcontent[content_id] = content_text

    return hotcontent


# 保存到MySQL数据库
def save_mysql(song_id, song_name, content):
    connect = pymysql.Connect(
        host='localhost',
        port=3306,
        user='root',
        passwd='root',
        db='music',
        # charset='utf8mb4'
    )
    cursor = connect.cursor()
    # sql = "inster into music_163 velues(%d,'%s','%s','%s')"
    sql = """
        INSERT INTO comment(song_id, song_name, comment,nickname)
        VALUES(%d, '%s', '%s', '%s')
    """
    for nikename in content:
        data = (int(song_id), escape_string(song_name), escape_string(content[nikename]), escape_string(nikename))
        print(data)
        cursor.execute(sql % data)
        connect.commit()


if __name__ == '__main__':
    get_163()

在这里插入图片描述


1.3、排行榜

CREATE TABLE `chart`  (
  `Chart` varchar(255),
  `Rank` varchar(255),
  `Title` varchar(255),
  `Times` varchar(255),
  `Singer` varchar(255)
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
# _*_ coding : utf-8 _*_
# @Time : 2023/11/15 14:20
# @Author : Laptoy
# @File : 02_musicChart
# @Project : finalDesign
from selenium import webdriver
from selenium.webdriver.common.by import By
import pymysql
import time

db_connection = pymysql.connect(
    host="localhost",
    user="root",
    password="root",
    database="music"
)
cursor = db_connection.cursor()

driver = webdriver.Chrome()
ids = ['19723756', '3779629', '2884035', '3778678']
charts = ['飙升榜', '新歌榜', '原创榜', '热歌榜']

for id, chart in zip(ids, charts):
    driver.get('https://music.163.com/#/discover/toplist?id=' + id)
    driver.switch_to.frame('contentFrame')
    time.sleep(1)
    divs = driver.find_elements(By.XPATH, '//*[@class="g-wrap12"]//tr[contains(@id,"1")]')

    for div in divs:
        # 榜单类型
        chart = chart
        # 标题
        title = div.find_element(By.XPATH, './/div[@class="ttc"]//b').get_attribute('title')
        # 排名
        rank = div.find_element(By.XPATH, './/span[@class="num"]').text
        # 时长
        times = div.find_element(By.XPATH, './/span[@class="u-dur "]').text
        # 歌手
        singer = div.find_element(By.XPATH, './td/div[@class="text"]/span').get_attribute('title')

        print(chart, title, rank, times, singer)

        insert_query = "INSERT INTO chart(chart, title, rank, times,singer) VALUES (%s, %s, %s, %s, %s)"
        chart_data = (chart, title, rank, times, singer)
        cursor.execute(insert_query, chart_data)
        db_connection.commit()

        time.sleep(1)
cursor.close()
db_connection.close()

二、搭建环境

1.1、搭建JAVA

mkdir /opt/tools
mkdir /opt/server

tar -zvxf jdk-8u131-linux-x64.tar.gz -C /opt/server
vim /etc/profile

# 文件末尾增加
export JAVA_HOME=/opt/server/jdk1.8.0_131
export PATH=${JAVA_HOME}/bin:$PATH

source /etc/profile

java -version

1、配置免密登录

vim /etc/hosts
# 文件末尾增加
192.168.88.110  [主机名]
ssh-keygen -t rsa

cd ~/.ssh
cat id_rsa.pub >> authorized_keys
chmod 600 authorized_keys

1.2、配置hadoop

tar -zvxf hadoop-3.1.0.tar.gz -C /opt/server/
# 进入/opt/server/hadoop-3.1.0/etc/hadoop
vim hadoop-env.sh
# 文件添加
export JAVA_HOME=/opt/server/jdk1.8.0_131

vim core-site.xml

<configuration>
    <property>
        <!--指定 namenode 的 hdfs 协议文件系统的通信地址-->
        <name>fs.defaultFS</name>
        <value>hdfs://[主机名]:8020</value>
    </property>
    <property>
        <!--指定 hadoop 数据文件存储目录-->
        <name>hadoop.tmp.dir</name>
        <value>/home/hadoop/data</value>
    </property>
</configuration>

hdfs-site.xml

<configuration>
    <property>
        <!--由于我们这里搭建是单机版本,所以指定 dfs 的副本系数为 1-->
        <name>dfs.replication</name>
        <value>1</value>
    </property>
</configuration>
vim workers
# 配置所有从属节点的主机名或 IP 地址,由于是单机版本,所以指定本机即可:
server

1、关闭防火墙

# 查看防火墙状态
sudo firewall-cmd --state
# 关闭防火墙:
sudo systemctl stop firewalld
# 禁止开机启动
sudo systemctl disable firewalld

2、初始化

cd /opt/server/hadoop-3.1.0/bin
./hdfs namenode -format

在这里插入图片描述

3、配置启动用户

cd /opt/server/hadoop-3.1.0/sbin/
# 编辑start-dfs.sh、stop-dfs.sh,在顶部加入以下内容
# 编辑start-all.sh、stop-all.sh,在顶部加入以下内容
HDFS_DATANODE_USER=root
HDFS_DATANODE_SECURE_USER=hdfs
HDFS_NAMENODE_USER=root
HDFS_SECONDARYNAMENODE_USER=root

4、启动

cd /opt/server/hadoop-3.1.0/sbin/
./start-dfs.sh

jps

在这里插入图片描述
5、访问

192.168.88.110:9870

在这里插入图片描述
6、配置环境变量方便启动

vim /etc/profile
export HADOOP_HOME=/opt/server/hadoop-3.1.0
export PATH=$PATH:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin
source /etc/profile

1.3、配置Hadoop环境:YARN

# 进入/opt/server/hadoop-3.1.0/etc/hadoop
vim mapred-site.xml
<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <property>
        <name>yarn.app.mapreduce.am.env</name>
        <value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
    </property>
    <property>
        <name>mapreduce.map.env</name>
        <value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
    </property>
    <property>
        <name>mapreduce.reduce.env</name>
        <value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
    </property>
</configuration>
vim yarn-site.xml
<configuration>
    <property>
        <!--配置 NodeManager 上运行的附属服务。需要配置成 mapreduce_shuffle 后才可
			以在Yarn 上运行 MapRedvimuce 程序。-->
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
</configuration>
cd /opt/server/hadoop-3.1.0/sbin/
# start-yarn.sh stop-yarn.sh在两个文件顶部添加以下内容
YARN_RESOURCEMANAGER_USER=root
HADOOP_SECURE_DN_USER=yarn
YARN_NODEMANAGER_USER=root
./start-yarn.sh

在这里插入图片描述
在这里插入图片描述


1.4、MYSQL

# 用于存放安装包
mkdir /opt/tools
# 用于存放解压后的文件
mkdir /opt/server

卸载Centos7自带mariadb

# 查找
rpm -qa|grep mariadb
# mariadb-libs-5.5.52-1.el7.x86_64
# 卸载
rpm -e mariadb-libs-5.5.52-1.el7.x86_64 --nodeps
# 创建mysql安装包存放点
mkdir /opt/server/mysql
# 解压
tar xvf mysql-5.7.34-1.el7.x86_64.rpm-bundle.tar -C /opt/server/mysql/
# 安装依赖
yum -y install libaio
yum -y install libncurses*
yum -y install perl perl-devel
# 切换到安装目录
cd /opt/server/mysql/
# 安装
rpm -ivh mysql-community-common-5.7.34-1.el7.x86_64.rpm 
rpm -ivh mysql-community-libs-5.7.34-1.el7.x86_64.rpm 
rpm -ivh mysql-community-client-5.7.34-1.el7.x86_64.rpm 
rpm -ivh mysql-community-server-5.7.34-1.el7.x86_64.rpm
#启动mysql
systemctl start mysqld.service
#查看生成的临时root密码
cat /var/log/mysqld.log | grep password

在这里插入图片描述

# 登录mysql
mysql -u root -p
Enter password:     #输入在日志中生成的临时密码
# 更新root密码 设置为root
set global validate_password_policy=0;
set global validate_password_length=1;
set password=password('root');
grant all privileges on *.* to 'root' @'%' identified by 'root';
# 刷新
flush privileges;
#mysql的启动和关闭 状态查看
systemctl stop mysqld
systemctl status mysqld
systemctl start mysqld
#建议设置为开机自启动服务
systemctl enable mysqld
#查看是否已经设置自启动成功
systemctl list-unit-files | grep mysqld

1.5、HIVE(数据仓库)

# 切换到安装包目录
cd /opt/tools
# 解压到/root/server目录
tar -zxvf apache-hive-3.1.2-bin.tar.gz -C /opt/server/
# 上传mysql-connector-java-5.1.38.jar到下面目录
cd /opt/server/apache-hive-3.1.2-bin/lib

配置文件

cd /opt/server/apache-hive-3.1.2-bin/conf
cp hive-env.sh.template hive-env.sh
vim hive-env.sh
# 加入以下内容
HADOOP_HOME=/opt/server/hadoop-3.1.0
cd /opt/server/apache-hive-3.1.2-bin/conf
vim hive-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
    <!-- 存储元数据mysql相关配置 /etc/hosts -->
    <property>
        <name>javax.jdo.option.ConnectionURL</name>
        <value> jdbc:mysql://[主机名]:3306/hive?
createDatabaseIfNotExist=true&amp;useSSL=false&amp;useUnicode=true&amp;chara
cterEncoding=UTF-8</value>
    </property>
    <property>
        <name>javax.jdo.option.ConnectionDriverName</name>
        <value>com.mysql.jdbc.Driver</value>
    </property>
    <property>
        <name>javax.jdo.option.ConnectionUserName</name>
        <value>root</value>
    </property>
    <property>
        <name>javax.jdo.option.ConnectionPassword</name>
        <value>root</value>
    </property>
</configuration>

初始化表

cd /opt/server/apache-hive-3.1.2-bin/bin
./schematool -dbType mysql -initSchema

在这里插入图片描述
在这里插入图片描述


1.6、Sqoop(关系数据库数据迁移)

1、拉取sqoop

# /opt/tools
wget https://archive.apache.org/dist/sqoop/1.4.7/sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz

tar -zxvf sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz -C /opt/server/

2、配置

cd /opt/server/sqoop-1.4.7.bin__hadoop-2.6.0/conf
cp sqoop-env-template.sh sqoop-env.sh

vim sqoop-env.sh
# 加入以下内容
export HADOOP_COMMON_HOME=/opt/server/hadoop-3.1.0
export HADOOP_MAPRED_HOME=/opt/server/hadoop-3.1.0
export HIVE_HOME=/opt/server/apache-hive-3.1.2-bin

3、加入mysql的jdbc驱动包

cd /opt/server/sqoop-1.4.7.bin__hadoop-2.6.0/lib
# mysql-connector-java-5.1.38.jar

三、hadoop配置内存

修改yarn-site.xml

<configuration>
    <!-- Site specific YARN configuration properties -->
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
    <property>
        <name>yarn.nodemanager.vmem-pmem-ratio</name>
        <value>4</value>
    </property>
</configuration>

重启

cd /opt/server/hadoop-3.1.0/sbin
./stop-all.sh
./start-all.sh

四、导入数据到hive

1、hive创建数据库

create database music;
use music;

2、hive创建数据表

# -- 将数据当做一列放入表中,后续再使用sql进行分割处理
CREATE TABLE chart_content(
   content STRING
);
CREATE TABLE playlist_content (
   content STRING
);

3、hive加载csv文件进hive表

load data local inpath '/opt/data/chart.csv' into table chart_content;
load data local inpath '/opt/data/playlist.csv' into table playlist;

4、创建表

CREATE TABLE `chart`  (
  `Chart` string,
  `Rank` string,
  `Title` string,
  `Times` string,
  `Singer` string
);

CREATE TABLE `playlist`  (
  `PlaylistID` string,
  `Type` string,
  `Title` string,
  `PlayCount` string,
  `Contributor` string
);

CREATE TABLE playlist (
   `PlaylistID` string,
  `Type` string,
  `Title` string,
  `PlayCount` string,
  `Contributor` string
)
row format delimited
fields terminated by ',';

5、将数据插入表中去掉","

INSERT INTO TABLE `chart`
SELECT
  split(content, ',')[0] AS `Chart`,
  split(content, ',')[1] AS `Rank`,
  split(content, ',')[2] AS `Title`,
  split(content, ',')[3] AS `Times`,
  split(content, ',')[4] AS `Singer`
FROM `chart_content`;

INSERT INTO TABLE `playlist`
SELECT
  split(content, ',')[0] AS `PlaylistID`,
  split(content, ',')[1] AS `Type`,
  split(content, ',')[2] AS `Title`,
  split(content, ',')[3] AS `PlayCount`,
  split(content, ',')[4] AS `Contributor`
FROM `playlist_content`;

在这里插入图片描述
在这里插入图片描述


SELECT
  PlaylistID,
  Type,
  Title,
  CAST(PlayCount AS int) AS PlayCount,
  Contributor
FROM playlist;
SELECT
    REGEXP_REPLACE(Contributor, '"', '')
FROM playlist;

http://www.kler.cn/a/161231.html

相关文章:

  • Qt初识简单使用Qt
  • uni-app表单⑪
  • HTML(超文本标记语言)
  • 【Linux】基础IO及文件描述符相关内容详细梳理
  • go语言中的log 包详解
  • 中兴光猫修改SN,MAC,修改地区,异地注册,改桥接,路由拨号
  • Ardupilot开源飞控之Invensense IMUs
  • 使用bard分析视频内容
  • 加载离线镜像包:在线镜像离线为tar包、tar离线镜像包加载并根据imageId打tag
  • INFINI Easysearch 与华为鲲鹏完成产品兼容互认证
  • 【文件上传系列】No.0 利用 FormData 实现文件上传、监控网路速度和上传进度(原生前端,Koa 后端)
  • 获取MATLAB默认配色方案
  • Git初学入门指令
  • Android平板还能编程?Ubuntu本地安装code-server远程编程写代码
  • Mysql综合案例练习<1>
  • SpringbootWeb登录认证
  • 【JavaScript】JS——Map数据类型
  • 视频监控管理平台/智能监测/检测系统EasyCVR智能地铁监控方案,助力地铁高效运营
  • 用23种设计模式打造一个cocos creator的游戏框架----(四)装饰器模式
  • MySQl int(1)、int(20) 的区别到底在哪里
  • JVM虚拟机(已整理,已废弃)
  • Spring Cache快速入门教程及案例
  • Java程序员,你掌握了多线程吗?【文末送书】
  • js取出对象数组某个属性拼接成字符串或者取出某些属性组成新的数组
  • 【C/PTA】结构体进阶练习
  • 将图像增广应用于Mnist数据集