当前位置: 首页 > article >正文

雅克比矩阵学习笔记

前置

假设 f : R n → R m f:R_n\to R_m f:RnRm是从 n n n维欧氏空间线性映射到到 m m m维欧氏空间的函数,这个函数由 m m m个实函数组成,记作:
{ y 1 = f 1 ( x 1 , x 2 , . . . , x n ) y 2 = f 2 ( x 1 , x 2 , . . . , x n ) . . . y m = f n ( x 1 , x 2 , . . . , x n ) \left\{ \begin{array}{lcl} y_1=f_1(x1,x2,...,x_n)\\ y_2=f_2(x1,x2,...,x_n)\\ ...\\ y_m=f_n(x1,x2,...,x_n)\\ \end{array} \right. y1=f1(x1,x2,...,xn)y2=f2(x1,x2,...,xn)...ym=fn(x1,x2,...,xn)

我们对 f ( Z ) , Z = ( x 1 , x 2 , . . . , x n ) f(Z),Z=(x_1,x_2,...,x_n) f(Z),Z=(x1,x2,...,xn)进行一阶泰勒展开,
f ( Z ) = f ( Z 0 ) + J f ( Z 0 ) ( Z − Z 0 ) f(Z)=f(Z_0)+J_f(Z_0)(Z-Z_0) f(Z)=f(Z0)+Jf(Z0)(ZZ0)

其中 f ( Z 0 ) f(Z_0) f(Z0)就是 f ( Z ) f(Z) f(Z) Z 0 Z_0 Z0的导数,在这里就是 f ( Z ) f(Z) f(Z)的雅克比矩阵。
值得注意的是,由于只展开到一阶,因此存在误差,故这里的等号并不是严格意义上的相等。

定义

m ∗ n m*n mn的雅克比矩阵:
[ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 . . . ∂ f 1 ∂ x n ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 . . . ∂ f 2 ∂ x n . . . . . . . . . . . . ∂ f m ∂ x 1 ∂ f m ∂ x 2 . . . ∂ f m ∂ x n ] \left[ \begin{matrix} \frac{\partial f_1}{\partial x_1}&\frac{\partial f_1}{\partial x_2}&...&\frac{\partial f_1}{\partial x_n}\\ \frac{\partial f_2}{\partial x_1}&\frac{\partial f_2}{\partial x_2}&...&\frac{\partial f_2}{\partial x_n}\\ ...&...&...&...\\ \frac{\partial f_m}{\partial x_1}&\frac{\partial f_m}{\partial x_2}&...&\frac{\partial f_m}{\partial x_n}\\ \end{matrix} \right] x1f1x1f2...x1fmx2f1x2f2...x2fm............xnf1xnf2...xnfm
当然也可以写成行矩阵的形式:
[ ∂ f ∂ x 1 ∂ f ∂ x 2 . . . ∂ f ∂ x n ] \left[ \begin{matrix} \frac{\partial f}{\partial x_1}&\frac{\partial f}{\partial x_2}&...&\frac{\partial f}{\partial x_n}\\ \end{matrix} \right] [x1fx2f...xnf]
这也正是梯度矩阵的转置矩阵,即 J f ( Z ) = ∇ f ( Z ) T J_f(Z)=\nabla f(Z)^T Jf(Z)=f(Z)T

雅克比行列式

n = m n=m n=m时,雅克比矩阵就变为了:
[ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 . . . ∂ f 1 ∂ x n ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 . . . ∂ f 2 ∂ x n . . . . . . . . . . . . ∂ f n ∂ x 1 ∂ f n ∂ x 2 . . . ∂ f n ∂ x n ] \left[ \begin{matrix} \frac{\partial f_1}{\partial x_1}&\frac{\partial f_1}{\partial x_2}&...&\frac{\partial f_1}{\partial x_n}\\ \frac{\partial f_2}{\partial x_1}&\frac{\partial f_2}{\partial x_2}&...&\frac{\partial f_2}{\partial x_n}\\ ...&...&...&...\\ \frac{\partial f_n}{\partial x_1}&\frac{\partial f_n}{\partial x_2}&...&\frac{\partial f_n}{\partial x_n}\\ \end{matrix} \right] x1f1x1f2...x1fnx2f1x2f2...x2fn............xnf1xnf2...xnfn

对上面的展开式进行移项,得:
f ( Z ) − f ( Z 0 ) = J f ( Z 0 ) ( Z − Z 0 ) f(Z)-f(Z_0)=J_f(Z_0)(Z-Z_0) f(Z)f(Z0)=Jf(Z0)(ZZ0)

Z − Z 0 = Δ x , f ( Z ) − f ( Z 0 ) = Δ y Z-Z_0=\Delta x,f(Z)-f(Z_0)=\Delta y ZZ0=Δx,f(Z)f(Z0)=Δy,于是有:
Δ y = J f ( Z 0 ) Δ x \Delta y=J_f(Z_0)\Delta x Δy=Jf(Z0)Δx

展开,有:
[ d y 1 d y 2 . . . d y n ] = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 . . . ∂ f 1 ∂ x n ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 . . . ∂ f 2 ∂ x n . . . . . . . . . . . . ∂ f n ∂ x 1 ∂ f n ∂ x 2 . . . ∂ f n ∂ x n ] ∗ [ d x 1 d x 2 . . . d x n ] \left[ \begin{matrix} \mathrm{d}y_1\\ \mathrm{d}y_2\\ ...\\ \mathrm{d}y_n\\ \end{matrix} \right]= \left[ \begin{matrix} \frac{\partial f_1}{\partial x_1}&\frac{\partial f_1}{\partial x_2}&...&\frac{\partial f_1}{\partial x_n}\\ \frac{\partial f_2}{\partial x_1}&\frac{\partial f_2}{\partial x_2}&...&\frac{\partial f_2}{\partial x_n}\\ ...&...&...&...\\ \frac{\partial f_n}{\partial x_1}&\frac{\partial f_n}{\partial x_2}&...&\frac{\partial f_n}{\partial x_n}\\ \end{matrix} \right]* \left[ \begin{matrix} \mathrm{d}x_1\\ \mathrm{d}x_2\\ ...\\ \mathrm{d}x_n\\ \end{matrix} \right] dy1dy2...dyn = x1f1x1f2...x1fnx2f1x2f2...x2fn............xnf1xnf2...xnfn dx1dx2...dxn
继续展开,有:
[ d y 1 d y 2 . . . d y n ] = [ ∂ f 1 ∂ x 1 d x 1 + ∂ f 1 ∂ x 2 d x 2 + . . . + ∂ f 1 ∂ x n d x n ∂ f 2 ∂ x 1 d x 1 + ∂ f 2 ∂ x 2 d x 2 + . . . + ∂ f 2 ∂ x n d x n . . . ∂ f n ∂ x 1 d x 1 + ∂ f n ∂ x 2 d x 2 + . . . + ∂ f n ∂ x n d x n ] \left[ \begin{matrix} \mathrm{d}y_1\\ \mathrm{d}y_2\\ ...\\ \mathrm{d}y_n\\ \end{matrix} \right]= \left[ \begin{matrix} \frac{\partial f_1}{\partial x_1}\mathrm{d}x_1+\frac{\partial f_1}{\partial x_2}\mathrm{d}x_2+...+\frac{\partial f_1}{\partial x_n}\mathrm{d}x_n\\ \frac{\partial f_2}{\partial x_1}\mathrm{d}x_1+\frac{\partial f_2}{\partial x_2}\mathrm{d}x_2+...+\frac{\partial f_2}{\partial x_n}\mathrm{d}x_n\\ ...\\ \frac{\partial f_n}{\partial x_1}\mathrm{d}x_1+\frac{\partial f_n}{\partial x_2}\mathrm{d}x_2+...+\frac{\partial f_n}{\partial x_n}\mathrm{d}x_n \end{matrix} \right] dy1dy2...dyn = x1f1dx1+x2f1dx2+...+xnf1dxnx1f2dx1+x2f2dx2+...+xnf2dxn...x1fndx1+x2fndx2+...+xnfndxn
正交化一下,有:
[ d y 1 0 . . . 0 0 d y 2 . . . 0 . . . . . . . . . . . . 0 0 . . . d y n ] = [ ∂ f 1 ∂ x 1 d x 1 ∂ f 1 ∂ x 2 d x 2 . . . ∂ f 1 ∂ x n d x n ∂ f 2 ∂ x 1 d x 1 ∂ f 2 ∂ x 2 d x 2 . . . ∂ f 2 ∂ x n d x n . . . . . . . . . . . . ∂ f n ∂ x 1 d x 1 ∂ f n ∂ x 2 d x 2 . . . ∂ f n ∂ x n d x n ] \left[ \begin{matrix} \mathrm{d}y_1&0&...&0\\ 0&\mathrm{d}y_2&...&0\\ ...&...&...&...\\ 0&0&...&\mathrm{d}y_n\\ \end{matrix} \right]= \left[ \begin{matrix} \frac{\partial f_1}{\partial x_1}\mathrm{d}x_1&\frac{\partial f_1}{\partial x_2}\mathrm{d}x_2&...&\frac{\partial f_1}{\partial x_n}\mathrm{d}x_n\\ \frac{\partial f_2}{\partial x_1}\mathrm{d}x_1&\frac{\partial f_2}{\partial x_2}\mathrm{d}x_2&...&\frac{\partial f_2}{\partial x_n}\mathrm{d}x_n\\ ...&...&...&...\\ \frac{\partial f_n}{\partial x_1}\mathrm{d}x_1&\frac{\partial f_n}{\partial x_2}\mathrm{d}x_2&...&\frac{\partial f_n}{\partial x_n}\mathrm{d}x_n \end{matrix} \right] dy10...00dy2...0............00...dyn = x1f1dx1x1f2dx1...x1fndx1x2f1dx2x2f2dx2...x2fndx2............xnf1dxnxnf2dxn...xnfndxn

取两边的行列式(特别注意的是,由于 { d x } , { d y } \{\mathrm{d}x\},\{\mathrm{d}y\} {dx},{dy}均为正数,因此行列式需取绝对值),有:
d y 1 ⋅ d y 2 ⋅ . . . ⋅ d y n = ∣ ∣ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 . . . ∂ f 1 ∂ x n ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 . . . ∂ f 2 ∂ x n . . . . . . . . . . . . ∂ f n ∂ x 1 ∂ f n ∂ x 2 . . . ∂ f n ∂ x n ∣ ∣ ⋅ d x 1 ⋅ d x 2 ⋅ . . . ⋅ d x n \mathrm{d}y_1\cdot \mathrm{d}y_2\cdot...\cdot\mathrm{d}y_n=\left| \begin{vmatrix} \frac{\partial f_1}{\partial x_1}&\frac{\partial f_1}{\partial x_2}&...&\frac{\partial f_1}{\partial x_n}\\ \frac{\partial f_2}{\partial x_1}&\frac{\partial f_2}{\partial x_2}&...&\frac{\partial f_2}{\partial x_n}\\ ...&...&...&...\\ \frac{\partial f_n}{\partial x_1}&\frac{\partial f_n}{\partial x_2}&...&\frac{\partial f_n}{\partial x_n}\\ \end{vmatrix} \right|\cdot\mathrm{d}x_1\cdot\mathrm{d}x_2\cdot...\cdot\mathrm{d}x_n dy1dy2...dyn= x1f1x1f2...x1fnx2f1x2f2...x2fn............xnf1xnf2...xnfn dx1dx2...dxn

即:
d y 1 ⋅ d y 2 ⋅ . . . ⋅ d y n = ∣ ∣ J f ( Z ) ∣ ∣ ⋅ d x 1 ⋅ d x 2 ⋅ . . . ⋅ d x n \mathrm{d}y_1\cdot \mathrm{d}y_2\cdot...\cdot\mathrm{d}y_n=||J_f(Z)||\cdot\mathrm{d}x_1\cdot\mathrm{d}x_2\cdot...\cdot\mathrm{d}x_n dy1dy2...dyn=∣∣Jf(Z)∣∣dx1dx2...dxn

上式在 n = 1 n=1 n=1时,也即在一元函数中,可以理解为原线段的长度经过 ∣ ∣ J f ( Z ) ∣ ∣ ||J_f(Z)|| ∣∣Jf(Z)∣∣的缩放得到新线段的长度;
上式在 n = 2 n=2 n=2时,也即在二元函数中,可以理解为原平面图形的面积经过 ∣ ∣ J f ( Z ) ∣ ∣ ||J_f(Z)|| ∣∣Jf(Z)∣∣的缩放得到新平面图形的面积;
上式在 n = 3 n=3 n=3时,也即在三元函数中,可以理解为原平面图形的体积经过 ∣ ∣ J f ( Z ) ∣ ∣ ||J_f(Z)|| ∣∣Jf(Z)∣∣的缩放得到新平面图形的体积;
n > 3 n>3 n>3时直观上不好描述其几何意义,姑且不做讨论。
换言之,雅可比矩阵的行列式可以理解为原几何图形所确定的某种几何关系经过线性变化得到新几何图形的一种缩放比例。这也正是仿射变换

应用

通过仿射变换解决圆锥曲线中一些问题(高中数学常用);
和黑塞矩阵一起作为各种牛顿法的基础,也是梯度下降等算法的基础(稍后会写);
和机器人以及运动学有关(大雾~~)。


http://www.kler.cn/a/2203.html

相关文章:

  • 数据库操作【JDBC HIbernate Mybatis】
  • opencv中的各种滤波器简介
  • nest 学习3
  • esp8266_TFTST7735语音识别UI界面虚拟小助手
  • 差分矩阵(Difference Matrix)与累计和矩阵(Running Sum Matrix)的概念与应用:中英双语
  • .NET Core 中使用 C# 获取Windows 和 Linux 环境兼容路径合并
  • 算法基础---基础算法
  • Learning C++ No.18【STL No.8】
  • 线段树SegmentTree
  • 为什么 ChatGPT 输出时经常会中断,需要输入“继续” 才可以继续输出?
  • 面试了8家软件公司测试岗位,面试题大盘点,我真的尽力了
  • 用结构体实现通讯录
  • Springboot源代码总结
  • Maven
  • Unity --- 游戏案例 --- 英雄无敌与Ruby
  • 第十九天 Maven总结
  • Python爬虫——Python Selenium基本用法
  • 字典树(前缀树)
  • 【Spring Cloud Alibaba】Spring Cloud Alibaba 搭建教程
  • Android性能优化的底层逻辑
  • Java实习生------Redis常见面试题汇总(AOF持久化、RDB快照、分布式锁、缓存一致性)⭐⭐⭐
  • Qt基础之三十三:海量网络数据实时显示
  • Spring Boot 中文参考指南(二)-Web
  • 前端网络安全
  • 吃透Java面试题,建议收藏
  • C++基础算法③——排序算法(选择、冒泡附完整代码)