当前位置: 首页 > article >正文

数据分析基础之《pandas(7)—高级处理2》

四、合并

如果数据由多张表组成,那么有时候需要将不同的内容合并在一起分析

1、先回忆下numpy中如何合并
水平拼接
    np.hstack()
竖直拼接
    np.vstack()
两个都能实现
    np.concatenate((a, b), axis=)

2、pd.concat([data1, data2], axis=1)
按照行或者列进行合并,axis=0为列索引,axis=1为行索引

将刚才处理好的one-hot编码与原数据合并

# pd.concat实现合并
# 原始数据
stock.head()

# one-hot编码处理好的数据
stock_change.head()

pd.concat([stock, stock_change], axis=1)

# 如果强行按照列索引拼接
pd.concat([stock_change, stock], axis=0)

3、pd.merge(left, right, how="inner", on=[索引])
说明:
left:左表
right:右表
how:如何合并,left左连接,right右连接,inner内连接,outer外连接
on:按什么字段

五、交叉表与透视表

1、交叉表与透视表有什么作用
找到、探索两个变量之间的关系

2、交叉表
交叉表用于计算一列数据对于另外一列数据的分组个数(寻找两个列之间的关系)
pd.crosstab(value1, value2)

# 交叉表
# 星期数和涨跌幅之间的关系
# pd.crosstab(星期数据列, 涨跌幅数据列)

# 准备星期数据列
date = pd.to_datetime(stock.index)

date

# stock加上星期一列
stock["week"] = date.weekday

stock

# 准备涨跌幅数据列
stock["pona"] = np.where(stock["p_change"] > 0, 1, 0)

stock

# 调用交叉表
data = pd.crosstab(stock["week"], stock["pona"])

data

# 将频数转成百分比
data.div(data.sum(axis=1), axis=0)

# 画图
data.div(data.sum(axis=1), axis=0).plot(kind="bar", stacked=True)

3、透视表
使用透视表,刚才的过程更加简单
pivot_table([数据字段], index=[分组字段])

# 透视表
# 对pona字段,用week来分组
stock.pivot_table(["pona"], index=["week"])

六、分组与聚合

分组与聚合通常是分析数据的一种方式,通常与一些统计函数一起使用,查看数据的分组情况
刚才的交叉表与透视表也有分组的功能,所以算是分组的一种形式,只不过他们主要是计算次数或者计算比例!!

1、什么是分组与聚合
分组:group by
聚合:通常是统计函数

2、分组与聚合API
(1)DataFrame.groupby(by=, as_index=False)
说明:
by:分组的列数据,可以多个

(2)Series.groupby()
用法和DataFrame.groupby类似

# 进行分组,对颜色分组,price1进行聚合
# 用dataframe的方法进行分组
col.groupby(by="color")["price1"].max()

# 使用series进行分组
col["price1"].groupby(col["color"]).max()

3、星巴克零售店铺数据案例
想知道美国的星巴克数量和中国的哪个多,或者想知道中国每个省份星巴克的数量的情况

# 星巴克零售店铺数据案例
starbucks = pd.read_csv("./directory.csv")

starbucks

# 按照国家分组,求出每个国家的星巴克零售店数量
starbucks.groupby("Country").count()["Brand"].sort_values(ascending=False)[:10].plot(kind="bar", figsize=(20, 8), fontsize=20)

# 加入省市一起分组
starbucks.groupby(by = ["Country", "State/Province"]).count()


http://www.kler.cn/a/234130.html

相关文章:

  • vue3+elementplus+虚拟树el-tree-v2+多条件筛选过滤filter-method
  • MySQL【三】
  • Ps:OpenColorIO 设置
  • MyBatis——增删查改(XML 方式)
  • 【AI构思渲染】网络直播——建筑绘图大模型生成渲染图
  • python 2小时学会八股文-数据结构
  • hook函数——useRef
  • 无人机应用场景和发展趋势,无人机技术的未来发展趋势分析
  • ubuntu22.04安装部署03: 设置root密码
  • 机器学习简介
  • 2.9 Binance_interface APP 现货交易-限单价平仓
  • MySQL数据库-索引概念及其数据结构、覆盖索引与回表查询关联、超大分页解决思路
  • 人工智能之参数估计
  • 算法学习——LeetCode力扣栈与队列篇1
  • 计算机视觉主要知识点
  • CleanMyMac X 4.14.7帮您安全清理Mac系统垃圾
  • [UI5 常用控件] 08.Wizard,NavContainer
  • 论文笔记:相似感知的多模态假新闻检测
  • Nginx实战:3-日志按天分割
  • python coding with ChatGPT 打卡第19天| 二叉树:合并二叉树
  • 显示器校准软件:BetterDisplay Pro for Mac v2.0.11激活版下载
  • 读书笔记之《运动改造大脑》:运动是最佳的健脑丸
  • 【大厂AI课学习笔记】【1.6 人工智能基础知识】(1)人工智能、机器学习、深度学习之间的关系
  • 二、数据结构
  • golang 集成sentry:http.Client
  • 【5G NR】【一文读懂系列】移动通讯中使用的信道编解码技术-Viterbi译码原理