当前位置: 首页 > article >正文

MongoDB聚合:$unionWith

$unionWith聚合阶段执行两个集合的合并,将两个集合的管道结果合并到一个结果集传送到下一个阶段。合并后的结果文档的顺序是不确定的。

语法

{ $unionWith: { coll: "<collection>", pipeline: [ <stage1>, ... ] } }

要包含集合的所有文档不进行任何处理,可以使用简化形式:

{ $unionWith: "<collection>" }  // 包含指定集合的所有文档

使用

参数字段:

字段描述
coll希望在结果集中包含的集合或视图管道的结果
pipeline可选,应用于coll的聚合管道[<stage1>, <stage2>, ....],聚合管道不能包含$out$merge阶段。从v6.0开始,管道可以在第一个阶段包含$search阶段

$unionWith操作等价于下面的SQL语句:

SELECT *
FROM Collection1
WHERE ...
UNION ALL
SELECT *
FROM Collection2
WHERE ...

重复的结果

前一阶段的合并结果和$unionWith阶段的合并结果可能包含重复结果。例如,创建一个suppliers 集合和一个warehouses 集合:

db.suppliers.insertMany([
  { _id: 1, supplier: "Aardvark and Sons", state: "Texas" },
  { _id: 2, supplier: "Bears Run Amok.", state: "Colorado"},
  { _id: 3, supplier: "Squid Mark Inc. ", state: "Rhode Island" },
])
db.warehouses.insertMany([
  { _id: 1, warehouse: "A", region: "West", state: "California" },
  { _id: 2, warehouse: "B", region: "Central", state: "Colorado"},
  { _id: 3, warehouse: "C", region: "East", state: "Florida" },
])

下面的聚合合并了聚合supplierswarehouse的state’字段投影结果。

db.suppliers.aggregate([
   { $project: { state: 1, _id: 0 } },
   { $unionWith: { coll: "warehouses", pipeline: [ { $project: { state: 1, _id: 0 } } ]} }
])

结果包含重复的文档

{ "state" : "Texas" }
{ "state" : "Colorado" }
{ "state" : "Rhode Island" }
{ "state" : "California" }
{ "state" : "Colorado" }
{ "state" : "Florida" }

要要去除重复,可以加个$group阶段,按照state字段分组:

db.suppliers.aggregate([
   { $project: { state: 1, _id: 0 } },
   { $unionWith: { coll: "warehouses", pipeline: [ { $project: { state: 1, _id: 0 } } ]} },
   { $group: { _id: "$state" } }
])

这样结果就没有重复的文档了:

 { "_id" : "California" }
 { "_id" : "Texas" }
 { "_id" : "Florida" }
 { "_id" : "Colorado" }
 { "_id" : "Rhode Island" }

$unionWith 分片集合

如果$unionWith阶段是$lookup管道的一部分,则$unionWithcoll被分片。例如,在下面的聚合操作中,不能对inventory_q1集合进行分片:

db.suppliers.aggregate([
   {
      $lookup: {
         from: "warehouses",
         let: { order_item: "$item", order_qty: "$ordered" },
         pipeline: [
            ...
            { $unionWith: { coll: "inventory_q1", pipeline: [ ... ] } },
            ...
         ],
         as: "stockdata"
      }
   }
])

限制

  • 聚合管道不能在事务中使用$unionWith
  • 如果$unionWith阶段是$lookup管道的一部分,则$unionWith的集合不能被分片
  • unionWith管道不能包含out阶段
  • unioWith管道不能包含merge阶段

举例

用多年的数据集合创建销售报告

下面示例使用$unionWith阶段来合并数据并返回多个集合的结果,在这些示例中,每个集合都包含一年的销售数据。

填充样本数据:

分别创建sales_2017sales_2018sales_2019sales_2019四个集合并填充数据:

db.sales_2017.insertMany( [
  { store: "General Store", item: "Chocolates", quantity: 150 },
  { store: "ShopMart", item: "Chocolates", quantity: 50 },
  { store: "General Store", item: "Cookies", quantity: 100 },
  { store: "ShopMart", item: "Cookies", quantity: 120 },
  { store: "General Store", item: "Pie", quantity: 10 },
  { store: "ShopMart", item: "Pie", quantity: 5 }
] )
db.sales_2018.insertMany( [
  { store: "General Store", item: "Cheese", quantity: 30 },
  { store: "ShopMart", item: "Cheese", quantity: 50 },
  { store: "General Store", item: "Chocolates", quantity: 125 },
  { store: "ShopMart", item: "Chocolates", quantity: 150 },
  { store: "General Store", item: "Cookies", quantity: 200 },
  { store: "ShopMart", item: "Cookies", quantity: 100 },
  { store: "ShopMart", item: "Nuts", quantity: 100 },
  { store: "General Store", item: "Pie", quantity: 30 },
  { store: "ShopMart", item: "Pie", quantity: 25 }
] )
db.sales_2019.insertMany( [
  { store: "General Store", item: "Cheese", quantity: 50 },
  { store: "ShopMart", item: "Cheese", quantity: 20 },
  { store: "General Store", item: "Chocolates", quantity: 125 },
  { store: "ShopMart", item: "Chocolates", quantity: 150 },
  { store: "General Store", item: "Cookies", quantity: 200 },
  { store: "ShopMart", item: "Cookies", quantity: 100 },
  { store: "General Store", item: "Nuts", quantity: 80 },
  { store: "ShopMart", item: "Nuts", quantity: 30 },
  { store: "General Store", item: "Pie", quantity: 50 },
  { store: "ShopMart", item: "Pie", quantity: 75 }
] )
db.sales_2020.insertMany( [
  { store: "General Store", item: "Cheese", quantity: 100, },
  { store: "ShopMart", item: "Cheese", quantity: 100},
  { store: "General Store", item: "Chocolates", quantity: 200 },
  { store: "ShopMart", item: "Chocolates", quantity: 300 },
  { store: "General Store", item: "Cookies", quantity: 500 },
  { store: "ShopMart", item: "Cookies", quantity: 400 },
  { store: "General Store", item: "Nuts", quantity: 100 },
  { store: "ShopMart", item: "Nuts", quantity: 200 },
  { store: "General Store", item: "Pie", quantity: 100 },
  { store: "ShopMart", item: "Pie", quantity: 100 }
] )

按照year、store和item的销售额

db.sales_2017.aggregate( [
   { $set: { _id: "2017" } },
   { $unionWith: { coll: "sales_2018", pipeline: [ { $set: { _id: "2018" } } ] } },
   { $unionWith: { coll: "sales_2019", pipeline: [ { $set: { _id: "2019" } } ] } },
   { $unionWith: { coll: "sales_2020", pipeline: [ { $set: { _id: "2020" } } ] } },
   { $sort: { _id: 1, store: 1, item: 1 } }
] )
  • $set阶段用于更新_id字段,使其包含年份
  • $unionWith阶段,将四个集合中的所有文档合并在一起,每个文档也使用$set阶段
  • $sort阶段,按照_id(年份)、storeitem进行排序

管道输出:

{ "_id" : "2017", "store" : "General Store", "item" : "Chocolates", "quantity" : 150 }
{ "_id" : "2017", "store" : "General Store", "item" : "Cookies", "quantity" : 100 }
{ "_id" : "2017", "store" : "General Store", "item" : "Pie", "quantity" : 10 }
{ "_id" : "2017", "store" : "ShopMart", "item" : "Chocolates", "quantity" : 50 }
{ "_id" : "2017", "store" : "ShopMart", "item" : "Cookies", "quantity" : 120 }
{ "_id" : "2017", "store" : "ShopMart", "item" : "Pie", "quantity" : 5 }
{ "_id" : "2018", "store" : "General Store", "item" : "Cheese", "quantity" : 30 }
{ "_id" : "2018", "store" : "General Store", "item" : "Chocolates", "quantity" : 125 }
{ "_id" : "2018", "store" : "General Store", "item" : "Cookies", "quantity" : 200 }
{ "_id" : "2018", "store" : "General Store", "item" : "Pie", "quantity" : 30 }
{ "_id" : "2018", "store" : "ShopMart", "item" : "Cheese", "quantity" : 50 }
{ "_id" : "2018", "store" : "ShopMart", "item" : "Chocolates", "quantity" : 150 }
{ "_id" : "2018", "store" : "ShopMart", "item" : "Cookies", "quantity" : 100 }
{ "_id" : "2018", "store" : "ShopMart", "item" : "Nuts", "quantity" : 100 }
{ "_id" : "2018", "store" : "ShopMart", "item" : "Pie", "quantity" : 25 }
{ "_id" : "2019", "store" : "General Store", "item" : "Cheese", "quantity" : 50 }
{ "_id" : "2019", "store" : "General Store", "item" : "Chocolates", "quantity" : 125 }
{ "_id" : "2019", "store" : "General Store", "item" : "Cookies", "quantity" : 200 }
{ "_id" : "2019", "store" : "General Store", "item" : "Nuts", "quantity" : 80 }
{ "_id" : "2019", "store" : "General Store", "item" : "Pie", "quantity" : 50 }
{ "_id" : "2019", "store" : "ShopMart", "item" : "Cheese", "quantity" : 20 }
{ "_id" : "2019", "store" : "ShopMart", "item" : "Chocolates", "quantity" : 150 }
{ "_id" : "2019", "store" : "ShopMart", "item" : "Cookies", "quantity" : 100 }
{ "_id" : "2019", "store" : "ShopMart", "item" : "Nuts", "quantity" : 30 }
{ "_id" : "2019", "store" : "ShopMart", "item" : "Pie", "quantity" : 75 }
{ "_id" : "2020", "store" : "General Store", "item" : "Cheese", "quantity" : 100 }
{ "_id" : "2020", "store" : "General Store", "item" : "Chocolates", "quantity" : 200 }
{ "_id" : "2020", "store" : "General Store", "item" : "Cookies", "quantity" : 500 }
{ "_id" : "2020", "store" : "General Store", "item" : "Nuts", "quantity" : 100 }
{ "_id" : "2020", "store" : "General Store", "item" : "Pie", "quantity" : 100 }
{ "_id" : "2020", "store" : "ShopMart", "item" : "Cheese", "quantity" : 100 }
{ "_id" : "2020", "store" : "ShopMart", "item" : "Chocolates", "quantity" : 300 }
{ "_id" : "2020", "store" : "ShopMart", "item" : "Cookies", "quantity" : 400 }
{ "_id" : "2020", "store" : "ShopMart", "item" : "Nuts", "quantity" : 200 }
{ "_id" : "2020", "store" : "ShopMart", "item" : "Pie", "quantity" : 100 }

根据item汇总销售额

db.sales_2017.aggregate( [
   { $unionWith: "sales_2018" },
   { $unionWith: "sales_2019" },
   { $unionWith: "sales_2020" },
   { $group: { _id: "$item", total: { $sum: "$quantity" } } },
   { $sort: { total: -1 } }
] )
  • $unionWith阶段将文档从指定的集合检索到管道中
  • $group阶段按item字段分组,并使用$sum计算每个item的总销售量
  • $sort阶段按合计降序排列文档

结果:

{ "_id" : "Cookies", "total" : 1720 }
{ "_id" : "Chocolates", "total" : 1250 }
{ "_id" : "Nuts", "total" : 510 }
{ "_id" : "Pie", "total" : 395 }
{ "_id" : "Cheese", "total" : 350 }

http://www.kler.cn/a/234749.html

相关文章:

  • 单片机:实现数码管动态显示(0~99999999)74hc138驱动(附带源码)
  • conda 环境报错error while loading shared libraries: libpython3.9.so.1.0
  • 109.【C语言】数据结构之求二叉树的高度
  • 重温设计模式--中介者模式
  • VSCode:IDE显示设置 --自定义字体及主题颜色
  • sfnt-pingpong -测试网络性能和延迟的工具
  • 数据库恢复
  • 【EAI 020】Diffusion Policy: Visuomotor Policy Learning via Action Diffusion
  • 14.1 OpenGL图元装配和光栅化:在光栅化之前丢弃图元
  • 问题排查利器 - 分布式 trace
  • BKP寄存器与RTC实时时钟
  • Mac中管理多版本Jdk
  • Django前后端分离之后端实践2
  • LeetCode跳跃游戏 VI
  • 【linux系统体验】-archlinux简易折腾
  • c# avalonia 实现正方体翻转效果
  • 探索数据可视化:Matplotlib在Python中的高效应用
  • python+flask+django医院预约挂号病历分时段管理系统snsj0
  • uniapp微信小程序开发踩坑日记:Pinia持久化
  • 【Linux】Linux下的基本指令
  • 瓦片边移动边绘制的性能优化
  • RPA财务机器人之UiPath实战 - 自动化操作Excel进行财务数据汇总与分析之流程建立与数据读取、处理、汇总、分析
  • 边缘计算的重要性与应用场景
  • 117.乐理基础-五线谱-音值组合法(二)
  • List stream的9种常用功能
  • SpringCloud-Nacos服务分级存储模型