高通 8255 基本通信(QUP)Android侧控制方法说明
一:整体说明
高通8255芯片中,SPI IIC UART核心统一由QUP V3 进行控制
QUP V3为可编程模块,可以将不同通道配置为SPI IIC UART通路,此部分配置在QNX侧
QUP 资源可以直接被QNX使用,Android侧可以通过两种方法使用QUP资源
二:QUP资源示意图
在8255上共有 4组 QUP资源,每组对应不同通信通道和对应的gpio,各资源对应关系图如下:
上图中,我们可以得到信息例如:
- 所有通道都支持 UART(64B FIFO模式)
- QUP1_SE_6不支持API了master功能
- QUP0_SE_0 对应的gpio_pin是20 21 22 23
- ...
上图中对于QUP lane 对应gpio的关系如下
例如 QUP0_SE_0 对应的gpio_pin是20 21 22 23 ,
如果设置为UART模式的话,pin20为CTS pin21为RFR pin22为TX pin23 为RX
三:Android 控制使用QUP的方法
如果要在Android侧使用 QUP相关资源有两种方法
参考网页:
- Architecture (qnx.com)
方法1:virtual devices
QUP在QNX侧配置相关驱动,通过hypervisor提供虚拟的devices节点给Android侧使用
此方法中大致逻辑如下:
1 硬件device通过Hypervisor 由 PVM(即QNX)直接使用driver控制
2 PVM(QNX侧)通过Hypervisor提供VirtoBE(BackEnd后端)向GVM(即Android侧)提供接口,这样GVM使用VirtoIOFE(FrontEnd前端) 来间接使用PVM的driver
核心逻辑:QNX直接使用QUP资源,Hypervisor作为桥梁,QNX提供driver的后端程序,Android提供driver的前端程序,即Android侧间接使用QUP资源
相关网页:
- Virtual devices (qnx.com)
- Configuring vdevs (qnx.com)
- Configuring guests (qnx.com)
- Configuring the hypervisor host (qnx.com)
方法2:pass-through
QUP资源通过hypervisor直接映射到Android侧,Android侧配置相关驱动使用真实的资源
此方法中大致逻辑如下:
1 QUP资源通过Hypervisor 直接提供给GVM(Android)侧使用
即 Android需要提供完整的QUP驱动程序
相关网页:
- Configuring the hypervisor host (qnx.com)
总结:
上述两种方法其实包含三部分内容
1 Android配置
2 QNX 配置 (需要注意的是方法2 看似没有使用QNX,但因为QNX为主系统,不使用QNX应该理解为不使用VirtoDev的形式,所以对于QUP资源来说只要这路资源使用了,就需要在QNX进行配置。)
3 Hypervisor配置
四: pass-through配置示例
示例要求:将gpio91 92 93 94 配置成一路passthrough的 蓝牙Uart通道
通过上述资源图:可以确认要使用 QUP2 :QUP2_SE_3的qup资源
QNX配置:
代码路径:/SD-AMSS4.5.5.0-ES2/tz/trustzone_images/core/settings/buses/qup_accesscontrol/qupv3/config/lemans/QUPAC_Access.c
对于结构体 QUPv3_se_security_permissions_type 各项定义:(大致含义) |
PeriphID(外设ID):指定要进行通信的外设的唯一标识符或地址。每个外设都有一个对应的唯一ID。 |
ProtocolID(协议ID):指定要在 QUP 上使用的通信协议,例如 UART、I2C 或 SPI。 |
Mode(模式):指定 QUP 的工作模式。常见的模式有主机模式、从设备模式、循环模式等。 |
NsOwner(命名空间所有者):确定外设的命名空间所有者。它用于指示访问特定功能或资源的权限。 |
bAllowFifo(是否启用FIFO):指示是否允许在数据传输过程中使用 FIFO(先进先出缓冲区)。当启用 FIFO 时,数据将被缓存,以提高传输效率。 |
bLoad(是否加载):用于指示当前操作是否涉及加载配置或固件。 |
bModExcl(是否独占模式):指示外设是否以独占模式进行访问。当以独占模式打开外设时,其他程序无法访问该外设。 |
关于ProtocolID
SD-AMSS4.5.5.0-ES2/tz/trustzone_images/core/settings/buses/qup_accesscontrol/qupv3/interface/QupACCommonIds.h
/** QUPv3 protocols */
typedef enum
{
QUPV3_PROTOCOL_NONE = 0,
QUPV3_PROTOCOL_SPI = 1,
QUPV3_PROTOCOL_UART = 2,
QUPV3_PROTOCOL_UART_2W = QUPV3_PROTOCOL_UART,
QUPV3_PROTOCOL_I2C = 3,
QUPV3_PROTOCOL_I3C = 4,
QUPV3_PROTOCOL_SPI_SLAVE = 5,
QUPV3_PROTOCOL_AFC = 6,
QUPV3_PROTOCOL_SPMI = 7,
QUPV3_PROTOCOL_QSPI_HID = 8,
QUPV3_PROTOCOL_QSPI = 9,
QUPV3_PROTOCOL_Q2SPI = 0xE,
QUPV3_PROTOCOL_UFCS = 0xD,
QUPV3_PROTOCOL_I3C_IBI = 0x104,
QUPV3_PROTOCOL_UART_4W = QUPV3_PROTOCOL_UART + 16,
QUPV3_PROTOCOL_I2C_MM = QUPV3_PROTOCOL_I2C + 16,
QUPV3_PROTOCOL_UINT32 = 0x7fffffff
} QUPv3_protocol_type;
关于Mode
/** QUPv3 FIFO/DMA access modes */
SD-AMSS4.5.5.0-ES2/tz/trustzone_images/core/settings/buses/qup_accesscontrol/qupv3/interface/QupACCommonIds.h
typedef enum
{
QUPV3_MODE_FIFO = 0,
QUPV3_MODE_CPU_DMA = 1,
QUPV3_MODE_GSI = 2,
QUPV3_MODE_MAX,
QUPV3_MODE_UINT32 = 0x7fffffff
} QUPv3_mode_type;
关于NsOwner
SD-AMSS4.5.5.0-ES2/tz/trustzone_images/core/settings/buses/qup_accesscontrol/qupv3/interface/QupACCommonIds.h
/** Defines for QUP access ids */
#define AC_NONE 0
#define AC_TZ 1
#define AC_HLOS_GSI 2
#define AC_HLOS 3
#define AC_HYP 4
#define AC_SSC_Q6_ELF 5
#define AC_ADSP_Q6_ELF 6 // Single
#define AC_SSC_HLOS 7 // ??, may be we combine this with other SSC one //
#define AC_CP_TOUCH 8
#define AC_CP_BITSTREAM 9
#define AC_CP_PIXEL 10
#define AC_CP_NON_PIXEL 11
#define AC_VIDEO_FW 12
#define AC_CP_CAMERA 13
#define AC_HLOS_UNMAPPED 14
#define AC_MSS_MSA 15
#define AC_MSS_NONMSA 16
#define AC_UNMAPPED 17
#define AC_LPASS 18
#define AC_NON_SECURE 19 // Use this ID to assign a SE to HLOS & ADSP with QUPV3_MODE_FIFO.
// The mode of operation can be either GSI or FIFO.
// But not CPU DMA.
#define AC_HLOS_MODEM 20 // For SEs assigned with AC_HLOS_MODEM
// 1. Set to FIFO mode, if there are any UEFI use cases and if UEFI driver support only FIFO mode.
// 2. Set to GSI mode, if there are UEFI use cases and UEFI driver supports GSI mode.
// SW will take care of assigning this SE to GSI mode after the FW loading is done at the end of UEFI.
#define AC_GVM_TUI 21 // Assigned to TUI GVM
#define AC_SPSS_SP 22
#define AC_OEM 23
#define AC_NON_SECURE_MODEM 24
#define AC_HOST 25
#define AC_GVM1 26
#define AC_GVM2 27
#define AC_GVM3 28
#define AC_GVM4 29
#define BLSP_AC_LAST 30
#define AC_DEFAULT 0xFF// Default as in retain whatever in SMMU static config table
Hypervisor配置:
相关代码路径:
① /SD-QNX4.5.5.0/apps/qnx_ap/target/hypervisor/gvm/ivi/la/linux-la.config
② /SD-HQX4.5.5.0-ES2/apps_kernel/kernel_platform/qcom/proprietary/devicetree/qcom/lemans-vm-qupv3.dtsi
代码解读:
Hypervisor代码路径是 ① ,需要配置的主要资源是 中断号和QUP资源
这两项内容对应的值可以从datasheet中取得,但查询比较麻烦,
因为Android的DTS高通厂商已经把基本信息填写好了,所以从DTS中取得更加方便,DTS路径如②
因此可以确认
中断号: 585
QUP的资源Memory地址: 0x88c000 范围是0x4000
可能疑问: 为什么DTS中锁定节点 qupv3_se17_4uart呢?
解答:建议查看一下dts中的节点包含关系
lemans-vm-qupv3.dtsi 源码节点包含关系如下:
&soc {
/* QUPv3_0 wrapper instance */
qupv3_0: qcom,qupv3_0_geni_se@9c0000 {
...
status = "ok";
qupv3_se0_i2c: i2c@980000 {
...
status = "disabled";
};
qupv3_se0_spi: spi@980000 {
...
status = "disabled";
};
qupv3_se1_i2c: i2c@984000 {
...
status = "disabled";
};
qupv3_se1_spi: spi@984000 {
...
status = "disabled";
};
qupv3_se2_i2c: i2c@988000 {
...
status = "disabled";
};
qupv3_se2_spi: spi@988000 {
...
status = "disabled";
};
qupv3_se3_i2c: i2c@98c000 {
...
status = "disabled";
};
qupv3_se3_spi: spi@98c000 {
...
status = "disabled";
};
qupv3_se4_i2c: i2c@990000 {
...
status = "disabled";
};
qupv3_se4_spi: spi@990000 {
...
status = "disabled";
};
qupv3_se5_i2c: i2c@994000 {
...
status = "disabled";
};
qupv3_se5_spi: spi@994000 {
...
status = "disabled";
};
qupv3_se5_2uart: qcom,qup_uart@994000 {
...
status = "disabled";
};
};
/* QUPv3_1 wrapper instance */
qupv3_1: qcom,qupv3_1_geni_se@ac0000 {
...
status = "ok";
qupv3_se7_i2c: i2c@a80000 {
...
status = "disabled";
};
qupv3_se7_spi: spi@a80000 {
...
status = "disabled";
};
qupv3_se8_i2c: i2c@a84000 {
...
status = "disabled";
};
qupv3_se8_spi: spi@a84000 {
...
status = "disabled";
};
qupv3_se9_i2c: i2c@a88000 {
...
status = "disabled";
};
qupv3_se9_spi: spi@a88000 {
...
status = "disabled";
};
/* Debug UART Instance for RUMI*/
qupv3_se9_2uart: qcom,qup_uart@a88000 {
...
status = "disabled";
};
qupv3_se10_i2c: i2c@a8c000 {
...
status = "disabled";
};
qupv3_se10_spi: spi@a8c000 {
...
status = "disabled";
};
/* Debug UART Instance */
qupv3_se10_2uart: qcom,qup_uart@a8c000 {
...
status = "disabled";
};
qupv3_se11_i2c: i2c@a90000 {
...
status = "disabled";
};
qupv3_se11_spi: spi@a90000 {
...
status = "disabled";
};
qupv3_se12_i2c: i2c@a94000 {
...
status = "disabled";
};
qupv3_se12_spi: spi@a94000 {
...
status = "disabled";
};
qupv3_se12_2uart: qcom,qup_uart@a94000 {
...
status = "disabled";
};
qupv3_se13_i2c: i2c@a98000 {
...
status = "disabled";
};
};
/* QUPv3_2 wrapper instance */
qupv3_2: qcom,qupv3_2_geni_se@8c0000 {
...
status = "ok";
qupv3_se14_i2c: i2c@880000 {
...
status = "disabled";
};
qupv3_se14_spi: spi@880000 {
...
status = "disabled";
};
qupv3_se15_i2c: i2c@884000 {
...
status = "disabled";
};
qupv3_se15_spi: spi@884000 {
...
status = "disabled";
};
qupv3_se16_i2c: i2c@888000 {
...
status = "disabled";
};
qupv3_se16_spi: spi@888000 {
...
status = "disabled";
};
qupv3_se17_i2c: i2c@88c000 {
...
status = "disabled";
};
qupv3_se17_spi: spi@88c000 {
...
status = "disabled";
};
/* BT UART Instance */
qupv3_se17_4uart: qcom,qup_uart@88c000 {
...
status = "disabled";
};
qupv3_se18_i2c: i2c@890000 {
...
status = "disabled";
};
qupv3_se18_spi: spi@890000 {
...
status = "disabled";
};
qupv3_se19_i2c: i2c@894000 {
...
status = "disabled";
};
qupv3_se19_spi: spi@894000 {
...
status = "disabled";
};
qupv3_se20_i2c: i2c@898000 {
...
status = "disabled";
};
qupv3_se20_spi: spi@898000 {
...
status = "disabled";
};
};
/* QUPv3_3 wrapper instance */
qupv3_3: qcom,qupv3_3_geni_se@bc0000 {
...
status = "ok";
qupv3_se21_i2c: i2c@b80000 {
...
status = "disabled";
};
qupv3_se21_spi: spi@b80000 {
...
status = "disabled";
};
};
};
我这里总结了一下各节点和QUP资源的对应关系 如下:
QUP serial engine | Android DTS KeyWord |
QUP0_SE0 | qupv3_se0_xxxxx |
QUP0_SE1 | qupv3_se1_xxxxx |
QUP0_SE2 | qupv3_se2_xxxxx |
QUP0_SE3 | qupv3_se3_xxxxx |
QUP0_SE4 | qupv3_se4_xxxxx |
QUP0_SE5 | qupv3_se5_xxxxx |
QUP1_SE0 | qupv3_se7_xxxxx |
QUP1_SE1 | qupv3_se8_xxxxx |
QUP1_SE2 | qupv3_se9_xxxxx |
QUP1_SE3 | qupv3_se10_xxxxx |
QUP1_SE4 | qupv3_se11_xxxxx |
QUP1_SE5 | qupv3_se12_xxxxx |
QUP1_SE6 | qupv3_se13_xxxxx |
QUP2_SE0 | qupv3_se14_xxxxx |
QUP2_SE1 | qupv3_se15_xxxxx |
QUP2_SE2 | qupv3_se16_xxxxx |
QUP2_SE3 | qupv3_se17_xxxxx |
QUP2_SE4 | qupv3_se18_xxxxx |
QUP2_SE5 | qupv3_se19_xxxxx |
QUP2_SE6 | qupv3_se20_xxxxx |
QUP3_SE0 | qupv3_se21_xxxxx |
Android侧配置:
对于Android侧的配置基本上就和Linux配置一样了
基本配置逻辑如下:
① 针对uart 的gpio的normal 和 sleep模式下的 Function及 config设定
② 上述 qup.dtsi中 qup节点信息设定
③ 需要特别注意的是,上面qup.dtsi中各子节点状态都是 disable,当需要使用的时候需要将状态更改为ok,同时便于使用需要在aliases节点中增加子节点描述
Android侧最终使用效果:
在Android侧最终会生成一个ttyHS0的device节点,其他操作正常通过该节点使用正常的linux或Android方法即可进行