k8s集群部署elk
一、前言
本次部署elk所有的服务都部署在k8s集群中,服务包含filebeat、logstash、elasticsearch、kibana,其中elasticsearch使用集群的方式部署,所有服务都是用7.17.10版本
二、部署
部署elasticsearch集群
部署elasticsearch集群需要先优化宿主机(所有k8s节点都要优化,不优化会部署失败)
vi /etc/sysctl.conf
vm.max_map_count=262144
重载生效配置
sysctl -p
以下操作在k8s集群的任意master执行即可
创建yaml文件存放目录
mkdir /opt/elk && cd /opt/elk
这里使用无头服务部署es集群,需要用到pv存储es集群数据,service服务提供访问,setafuset服务部署es集群
创建svc的无头服务和对外访问的yaml配置文件
vi es-service.yaml
kind: Service
metadata:
name: elasticsearch
namespace: elk
labels:
app: elasticsearch
spec:
selector:
app: elasticsearch
clusterIP: None
ports:
- port: 9200
name: db
- port: 9300
name: inter
vi es-service-nodeport.yaml
apiVersion: v1
kind: Service
metadata:
name: elasticsearch-nodeport
namespace: elk
labels:
app: elasticsearch
spec:
selector:
app: elasticsearch
type: NodePort
ports:
- port: 9200
name: db
nodePort: 30017
- port: 9300
name: inter
nodePort: 30018
创建pv的yaml配置文件(这里使用nfs共享存储方式)
vi es-pv.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
name: es-pv1
spec:
storageClassName: es-pv #定义了存储类型
capacity:
storage: 30Gi
accessModes:
- ReadWriteMany
persistentVolumeReclaimPolicy: Retain
nfs:
path: /volume2/k8s-data/es/es-pv1
server: 10.1.13.99
---
apiVersion: v1
kind: PersistentVolume
metadata:
name: es-pv2
spec:
storageClassName: es-pv #定义了存储类型
capacity:
storage: 30Gi
accessModes:
- ReadWriteMany
persistentVolumeReclaimPolicy: Retain
nfs:
path: /volume2/k8s-data/es/es-pv2
server: 10.1.13.99
---
apiVersion: v1
kind: PersistentVolume
metadata:
name: es-pv3
spec:
storageClassName: es-pv #定义了存储类型
capacity:
storage: 30Gi
accessModes:
- ReadWriteMany
persistentVolumeReclaimPolicy: Retain
nfs:
path: /volume2/k8s-data/es/es-pv3
server: 10.1.13.99
创建setafulset的yaml配置文件
vi es-setafulset.yaml
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: elasticsearch
namespace: elk
labels:
app: elasticsearch
spec:
podManagementPolicy: Parallel
serviceName: elasticsearch
replicas: 3
selector:
matchLabels:
app: elasticsearch
template:
metadata:
labels:
app: elasticsearch
spec:
tolerations: #此配置是容忍污点可以使pod部署到master节点,可以去掉
- key: "node-role.kubernetes.io/control-plane"
operator: "Exists"
effect: NoSchedule
containers:
- image: elasticsearch:7.17.10
name: elasticsearch
resources:
limits:
cpu: 1
memory: 2Gi
requests:
cpu: 0.5
memory: 500Mi
env:
- name: network.host
value: "_site_"
- name: node.name
value: "${HOSTNAME}"
- name: discovery.zen.minimum_master_nodes
value: "2"
- name: discovery.seed_hosts #该参数用于告诉新加入集群的节点去哪里发现其他节点,它应该包含集群中已经在运行的一部分节点的主机名或IP地址,这里我使用无头服务的地址
value: "elasticsearch-0.elasticsearch.elk.svc.cluster.local,elasticsearch-1.elasticsearch.elk.svc.cluster.local,elasticsearch-2.elasticsearch.elk.svc.cluster.local"
- name: cluster.initial_master_nodes #这个参数用于指定初始主节点。当一个新的集群启动时,它会从这个列表中选择一个节点作为初始主节点,然后根据集群的情况选举其他的主节点
value: "elasticsearch-0,elasticsearch-1,elasticsearch-2"
- name: cluster.name
value: "es-cluster"
- name: ES_JAVA_OPTS
value: "-Xms512m -Xmx512m"
ports:
- containerPort: 9200
name: db
protocol: TCP
- name: inter
containerPort: 9300
volumeMounts:
- name: elasticsearch-data
mountPath: /usr/share/elasticsearch/data
volumeClaimTemplates:
- metadata:
name: elasticsearch-data
spec:
storageClassName: "es-pv"
accessModes: [ "ReadWriteMany" ]
resources:
requests:
storage: 30Gi
创建elk服务的命名空间
kubectl create namespace elk
创建yaml文件的服务
kubectl create -f es-pv.yaml
kubectl create -f es-service-nodeport.yaml
kubectl create -f es-service.yaml
kubectl create -f es-setafulset.yaml
查看es服务是否正常启动
kubectl get pod -n elk
检查elasticsearch集群是否正常
http://10.1.60.119:30017/_cluster/state/master_node,nodes?pretty
可以看到集群中能正确识别到三个es节点
elasticsearch集群部署完成
部署kibana服务
这里使用deployment控制器部署kibana服务,使用service服务对外提供访问
创建deployment的yaml配置文件
vi kibana-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: kibana
namespace: elk
labels:
app: kibana
spec:
replicas: 1
selector:
matchLabels:
app: kibana
template:
metadata:
labels:
app: kibana
spec:
tolerations:
- key: "node-role.kubernetes.io/control-plane"
operator: "Exists"
effect: NoSchedule
containers:
- name: kibana
image: kibana:7.17.10
resources:
limits:
cpu: 1
memory: 1G
requests:
cpu: 0.5
memory: 500Mi
env:
- name: ELASTICSEARCH_HOSTS
value: http://elasticsearch:9200
ports:
- containerPort: 5601
protocol: TCP
创建service的yaml配置文件
vi kibana-service.yaml
apiVersion: v1
kind: Service
metadata:
name: kibana
namespace: elk
spec:
ports:
- port: 5601
protocol: TCP
targetPort: 5601
nodePort: 30019
type: NodePort
selector:
app: kibana
创建yaml文件的服务
kubectl create -f kibana-service.yaml
kubectl create -f kibana-deployment.yaml
查看kibana是否正常
kubectl get pod -n elk
部署logstash服务
logstash服务也是通过deployment控制器部署,需要使用到configmap存储logstash配置,还有service提供对外访问服务
编辑configmap的yaml配置文件
vi logstash-configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: logstash-configmap
namespace: elk
labels:
app: logstash
data:
logstash.conf: |
input {
beats {
port => 5044 #设置日志收集端口
# codec => "json"
}
}
filter {
}
output {
# stdout{ 该被注释的配置项用于将收集的日志输出到logstash的日志中,主要用于测试看收集的日志中包含哪些内容
# codec => rubydebug
# }
elasticsearch {
hosts => "elasticsearch:9200"
index => "nginx-%{+YYYY.MM.dd}"
}
}
编辑deployment的yaml配置文件
vi logstash-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: logstash
namespace: elk
spec:
replicas: 1
selector:
matchLabels:
app: logstash
template:
metadata:
labels:
app: logstash
spec:
containers:
- name: logstash
image: logstash:7.17.10
imagePullPolicy: IfNotPresent
ports:
- containerPort: 5044
volumeMounts:
- name: config-volume
mountPath: /usr/share/logstash/pipeline/
volumes:
- name: config-volume
configMap:
name: logstash-configmap
items:
- key: logstash.conf
path: logstash.conf
编辑service的yaml配置文件(我这里是收集k8s内部署的服务日志,所以没开放对外访问)
vi logstash-service.yaml
apiVersion: v1
kind: Service
metadata:
name: logstash
namespace: elk
spec:
ports:
- port: 5044
targetPort: 5044
protocol: TCP
selector:
app: logstash
type: ClusterIP
创建yaml文件的服务
kubectl create -f logstash-configmap.yaml
kubectl create -f logstash-service.yaml
kubectl create -f logstash-deployment.yaml
查看logstash服务是否正常启动
kubectl get pod -n elk
部署filebeat服务
filebeat服务使用daemonset方式部署到k8s的所有工作节点上,用于收集容器日志,也需要使用configmap存储配置文件,还需要配置rbac赋权,因为用到了filebeat的自动收集模块,自动收集k8s集群的日志,需要对k8s集群进行访问,所以需要赋权
编辑rabc的yaml配置文件
vi filebeat-rbac.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
name: filebeat
namespace: elk
labels:
app: filebeat
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: filebeat
labels:
app: filebeat
rules:
- apiGroups: [""]
resources: ["namespaces", "pods", "nodes"] #赋权可以访问的服务
verbs: ["get", "list", "watch"] #可以使用以下命令
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: filebeat
subjects:
- kind: ServiceAccount
name: filebeat
namespace: elk
roleRef:
kind: ClusterRole
name: filebeat
apiGroup: rbac.authorization.k8s.io
编辑configmap的yaml配置文件
vi filebeat-configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: filebeat-config
namespace: elk
data:
filebeat.yml: |
filebeat.autodiscover: #使用filebeat的自动发现模块
providers:
- type: kubernetes #类型选择k8s类型
templates: #配置需要收集的模板
- condition:
and:
- or:
- equals:
kubernetes.labels: #通过标签筛选需要收集的pod日志
app: foundation
- equals:
kubernetes.labels:
app: api-gateway
- equals: #通过命名空间筛选需要收集的pod日志
kubernetes.namespace: java-service
config: #配置日志路径,使用k8s的日志路径
- type: container
symlinks: true
paths: #配置路径时,需要使用变量去构建路径,以此来达到收集对应服务的日志
- /var/log/containers/${data.kubernetes.pod.name}_${data.kubernetes.namespace}_${data.kubernetes.container.name}-*.log
output.logstash:
hosts: ['logstash:5044']
关于filebeat自动发现k8s服务的更多内容可以参考elk官网,里面还有很多的k8s参数可用
参考:Autodiscover | Filebeat Reference [8.12] | Elastic
编辑daemonset的yaml配置文件
vi filebeat-daemonset.yaml
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: filebeat
namespace: elk
labels:
app: filebeat
spec:
selector:
matchLabels:
app: filebeat
template:
metadata:
labels:
app: filebeat
spec:
serviceAccountName: filebeat
terminationGracePeriodSeconds: 30
containers:
- name: filebeat
image: elastic/filebeat:7.17.10
args: [
"-c", "/etc/filebeat.yml",
"-e",
]
env:
- name: NODE_NAME
valueFrom:
fieldRef:
fieldPath: spec.nodeName
securityContext:
runAsUser: 0
resources:
limits:
cpu: 200m
memory: 200Mi
requests:
cpu: 100m
memory: 100Mi
volumeMounts:
- name: config
mountPath: /etc/filebeat.yml
readOnly: true
subPath: filebeat.yml
- name: log #这里挂载了三个日志路径,这是因为k8s的container路径下的日志文件都是通过软链接去链接其它目录的文件
mountPath: /var/log/containers
readOnly: true
- name: pod-log #这里是container下的日志软链接的路径,然而这个还不是真实路径,这也是个软链接
mountPath: /var/log/pods
readOnly: true
- name: containers-log #最后这里才是真实的日志路径,如果不都挂载进来是取不到日志文件的内容的
mountPath: /var/lib/docker/containers
readOnly: true
volumes:
- name: config
configMap:
defaultMode: 0600
name: filebeat-config
- name: log
hostPath:
path: /var/log/containers
- name: pod-log
hostPath:
path: /var/log/pods
- name: containers-log
hostPath:
path: /var/lib/docker/containers
创建yaml文件的服务
kubectl create -f filebeat-rbac.yaml
kubectl create -f filebeat-configmap.yaml
kubectl create -f filebeat-daemonset.yaml
查看filebeat服务是否正常启动
kubectl get pod -n elk
至此在k8s集群内部署elk服务完成