当前位置: 首页 > article >正文

缓存:浅谈双写导致的数据一致性问题

从理论上来说,给缓存设置过期时间,是保证最终一致性的解决方案。这种方案下,我们对存入缓存的数据设置过期时间,所有的写操作以数据库为准,对缓存操作只是尽最大努力更新即可。也就是说如果数据库写成功,缓存更新失败,那么只要到达过期时间,则后面的读请求自然会从数据库中读取新值然后回填缓存。

因此,接下来讨论的思路不依赖于给缓存设置过期时间这个方案。我们讨论三种更新策略:
1、先更新缓存,再更新数据库。(不可取)
2、先更新数据库,再更新缓存。(不可取)
3、先删除缓存,再更新数据库。(不可取)
4、先更新数据库,再删除缓存。(可取,有问题待解决)

大前提:先读缓存,如果缓存没有,才从数据库读取。

一、先更新数据库,再更新缓存

这套方案,大家是普遍反对的。为什么呢?有如下两点原因。

1、原因1-线程安全角度

同时有请求A和请求B进行更新操作,那么会出现
(1)线程A更新了数据库
(2)线程B更新了数据库
(3)线程B更新了缓存
(4)线程A更新了缓存
这就出现请求A更新缓存应该比请求B更新缓存早才对,但是因为网络等原因,B却比A更早更新了缓存。这就导致了脏数据,因此不考虑。

2、原因2-业务场景角度

有如下两点:
(1)如果你是一个写数据库场景比较多,而读数据场景比较少的业务需求,采用这种方案就会导致,数据压根还没读到,缓存就被频繁的更新,浪费性能。
(2)如果你写入数据库的值,并不是直接写入缓存的,而是要经过一系列复杂的计算再写入缓存。那么,每次写入数据库后,都再次计算写入缓存的值,无疑是浪费性能的。显然,删除缓存更为适合。

接下来讨论的就是争议最大的:先删缓存,再更新数据库;还是先更新数据库,再删缓存的问题。

二、先删缓存,再更新数据库

该方案如果有一个请求A进行更新操作,另一个请求B进行查询操作。那么会出现如下情形:
(1)请求A进行写操作,删除缓存
(2)请求B查询发现缓存不存在
(3)请求B去数据库查询得到旧值
(4)请求B将旧值写入缓存
(5)请求A将新值写入数据库
上述情况就会导致不一致的情形出现。而且,如果不采用给缓存设置过期时间策略,该数据永远都是脏数据。

那么,如何解决呢?采用双删延时策略
(1)先淘汰缓存;
(2)再写数据库(这两步和原来一样);
(3)休眠1秒,再次淘汰缓存。
这么做,可以将1秒内所造成的缓存脏数据,再次删除。

那么,这个1秒怎么确定的,具体该休眠多久呢?先自行评估项目读数据业务逻辑的耗时,然后写数据的休眠时间则在读数据业务逻辑的耗时基础上,加几百ms即可。这么做的目的,就是确保读请求结束,写请求可以删除读请求造成的缓存脏数据。

如果用了mysql的读写分离架构怎么办?在这种情况下,造成数据不一致的原因如下,还是两个请求,一个请求A进行更新操作,另一个请求B进行查询操作。
(1)请求A进行写操作,删除缓存;
(2)请求A将数据写入数据库了,
(3)请求B查询缓存发现,缓存没有值;
(4)请求B去从库查询,这时,还没有完成主从同步,因此查询到的是旧值;
(5)请求B将旧值写入缓存;
(6)数据库完成主从同步,从库变为新值。
上述情形,就是数据不一致的原因。还是使用双删延时策略。只是,睡眠时间修改为在主从同步的延时时间基础上,加几百ms。

采用这种同步淘汰策略,吞吐量降低怎么办?那就将第二次删除作为异步的:自己起一个线程,异步删除。这样,写的请求就不用沉睡一段时间后了,这么做,加大吞吐量。

第二次删除,如果删除失败怎么办?
这是个非常好的问题,因为第二次删除失败,就会出现如下情形。还是有两个请求,一个请求A进行更新操作,另一个请求B进行查询操作,为了方便,假设是单库:
(1)请求A进行写操作,删除缓存
(2)请求B查询发现缓存不存在
(3)请求B去数据库查询得到旧值
(4)请求B将旧值写入缓存
(5)请求A将新值写入数据库
(6)请求A试图去删除,请求B写入对的缓存值,结果失败了。
ok,这也就是说。如果第二次删除缓存失败,会再次出现缓存和数据库不一致的问题。

如何解决呢?

三、先更新数据库,再删缓存

老外曾提出一个缓存更新套路,名为《Cache-Aside pattern》。其中就指出:

  • 失效:应用程序先从cache取数据,没有得到,则从数据库中取数据,成功后,放到缓存中。
  • 命中:应用程序从cache中取数据,取到后返回。
  • 更新:先把数据存到数据库中,成功后,再让缓存失效。

另外,知名社交网站facebook也在论文《Scaling Memcache at Facebook》中提出,他们用的也是先更新数据库,再删缓存的策略。

这种情况不存在并发问题么?不是的,也会存在。假设有两个请求,一个请求A做查询操作,一个请求B做更新操作,那么会有如下情形产生
(1)缓存刚好失效
(2)请求A查询数据库,得一个旧值
(3)请求B将新值写入数据库
(4)请求B删除缓存
(5)请求A将查到的旧值写入缓存
ok,如果发生上述情况,确实是会发生脏数据。

然而,发生这种情况的概率又有多少呢?发生上述情况有一个先天性条件,就是步骤(3)的写数据库操作比步骤(2)的读数据库操作耗时更短,才有可能使得步骤(4)先于步骤(5)。可是,大家想想,数据库的读操作的速度远快于写操作的,因此步骤(3)耗时比步骤(2)更短,这一情形很难出现。

如果一定要解决上述并发问题,也可以采用异步延时删除策略,保证读请求完成以后,再进行删除操作。

四、保障重试机制

1、方案一:消息队列

流程如下所示
(1)更新数据库数据;
(2)缓存因为种种问题删除失败
(3)将需要删除的key发送至消息队列
(4)自己消费消息,获得需要删除的key
(5)继续重试删除操作,直到成功

然而,该方案有一个缺点,对业务线代码造成大量的侵入,于是有了方案二。
在这里插入图片描述

2、方案二:BinLog

在方案二中,启动一个订阅程序去订阅数据库的binlog,获得需要操作的数据。在应用程序中,另起一段程序,获得这个订阅程序传来的信息,进行删除缓存操作。

流程如下图所示:
(1)更新数据库数据
(2)数据库会将操作信息写入binlog日志当中
(3)订阅程序提取出所需要的数据以及key
(4)另起一段非业务代码,获得该信息
(5)尝试删除缓存操作,发现删除失败
(6)将这些信息发送至消息队列
(7)重新从消息队列中获得该数据,重试操作。

备注说明:上述的订阅binlog程序在mysql中有现成的中间件叫canal,可以完成订阅binlog日志的功能。

重试机制,本文采用的是消息队列的方式。如果对一致性要求不是很高,直接在程序中另起一个线程,每隔一段时间去重试即可,这些大家可以灵活自由发挥,只是提供一个思路。
在这里插入图片描述


http://www.kler.cn/a/283879.html

相关文章:

  • Xshell,Shell的相关介绍与Linux中的权限问题
  • SpringBoot后端解决跨域问题
  • 推荐一个超漂亮ui的网页应用设计
  • 使用ookii-dialogs-wpf在WPF选择文件夹时能输入路径
  • ubuntu20.04安装anaconda与基本使用
  • 16008.行为树(五)-自定义数据指针在黑板中的传递
  • 【2024 CCF编程能力等级认证(GESP)Python 】一级大纲
  • 桥接与NET
  • AI-Talk开发板硬件适配
  • 改造小蚁摄像头支持免费无限容量云储存(Samba挂载篇)
  • 零基础入门转录组数据分析——基因Wilcoxon秩和检验
  • python进阶篇-day02-面向对象高级
  • DIFFUSION 系列笔记| Latent Diffusion Model、Stable Diffusion基础概念、数学原理、代码分析、案例展示
  • 【node.js】基础之修改文件
  • APP渠道来源方案探索
  • 第22周:调用Gensim库训练Word2Vec模型
  • 使用对象池优化 C++ 程序性能的实用指南
  • 传输层协议-UDP数据报
  • 6 自研rgbd相机基于rk3566之深度计算库程序详解
  • 第一次用macos快速上手教程
  • 算法进阶篇 之 实用数据结构
  • 【图论简介】
  • 深入理解Python中的`super()`函数:如何调用父类的方法
  • 【数字IC】——逻辑综合,物理数据的读入
  • Vxe UI vue vxe-table 如何在表格中使用上传附件、上传图片
  • Linux下编译安装SuperLU