当前位置: 首页 > article >正文

特殊类的设计与类型转换

特殊类的设计


1.请设计一个不能被拷贝的类

拷贝只会放生在两个场景中:拷贝构造函数以及赋值运算符重载,因此想要让一个类禁止拷贝,只需让该类不能调用拷贝构造函数以及赋值运算符重载即可。

  • C++98

C++98是怎么设计的呢?

class CopyBan
{
public:
	CopyBan() = default;
private:
	CopyBan(const CopyBan&);
	CopyBan& operator=(const CopyBan&);
};

(将拷贝构造与赋值重载函数封装为私有)

原因:

1. 设置成私有:如果只声明没有设置成private,用户自己如果在类外定义了,就可以不能禁止拷贝了

2. 只声明不定义:不定义是因为该函数根本不会调用,定义了其实也没有什么意义,不写反而还简单,而且如果定义了就不会防止成员函数内部拷贝了。

  • C++11

C++11之后新增了delete 关键字

class CopyBan
{
public:
	CopyBan() = default;
	CopyBan(const CopyBan&) = delete;
	CopyBan& operator=(const CopyBan&) = delete;
};

C++11扩展delete的用法,delete除了释放new申请的资源外,如果在默认成员函数后跟上=delete,表示让编译器删除掉该默认成员函数。


2. 请设计一个只能在堆上创建对象的类

实现方式:

1. 将类的构造函数私有,拷贝构造声明成私有。防止别人调用拷贝在栈上生成对象。

2. 提供一个静态的成员函数,在该静态成员函数中完成堆对象的创建

class HeapOnly
{
public:
	static HeapOnly* Creatobj()
	{
		return new HeapOnly;
	}

private:
	HeapOnly()
	{

	}

	HeapOnly(const HeapOnly&) = delete;
};

int main()
{
	//HeapOnly();
	//static HeapOnly hp1;

	HeapOnly* hp2 = HeapOnly::Creatobj();
	//HeapOnly hp3(*hp2);
	return 0;
}

还有一种比较另类的方法,把析构函数给私有化。

class HeapOnly
{
public:
	void destroy()
	{
		delete this;
	}

private:
	~HeapOnly()
	{

	}
};

int main()
{
	//HeapOnly();
	//static HeapOnly hp1;

	HeapOnly* hp2 = new HeapOnly;
	hp2->destroy();
	//HeapOnly* hp2 = HeapOnly::Creatobj();
	//HeapOnly hp3(*hp2);
	return 0;
}

但是我们就要用写一个成员函数来调用析构函数。

3. 请设计一个只能在栈上创建对象的类

先看下面这种写法有什么问题没有?

class StackOnly
{
public:
	static StackOnly CreateObj()
	{
		return StackOnly();
	}
private:
	StackOnly()
	{

	}
	void* operator new(size_t size) = delete;

private:
    int _a = 1;
};

下面这种写法虽然不可以再堆上创建对象了,但是可以在静态区创建对象。有点封不死。

我们可以像下面这样写呢?:

class StackOnly
{
public:
	static StackOnly CreateObj()
	{
		return StackOnly();
	}

	StackOnly(StackOnly&& s)
	{

	}

	StackOnly(const StackOnly& s) = delete;
private:
	StackOnly()
	{

	}
};

所以相对而言还是第一种方法更好一点。

4. 请设计一个不能被继承的类

C++98方式:

// C++98中构造函数私有化,派生类中调不到基类的构造函数。则无法继承
class NonInherit
{
public:
	static NonInherit GetInstance()
	{
		return NonInherit();
	}
private:
	NonInherit()
	{}
};

C++11:

final关键字,final修饰类,表示该类不能被继承。
 

class A final
{
	// ....
};

5. 请设计一个类,只能创建一个对象(单例模式)

设计模式:

设计模式(Design Pattern)是一套被反复使用、多数人知晓的、经过分类的、代码设计经验的总结。为什么会产生设计模式这样的东西呢?就像人类历史发展会产生兵法。最开始部落之间打仗时都是人拼人的对砍。后来春秋战国时期,七国之间经常打仗,就发现打仗也是有套路的,后来孙子就总结出了《孙子兵法》。孙子兵法也是类似。

使用设计模式的目的:为了代码可重用性、让代码更容易被他人理解、保证代码可靠性。 设计模式使代码编写真正工程化;设计模式是软件工程的基石脉络,如同大厦的结构一样。

单例模式:

一个类只能创建一个对象,即单例模式,该模式可以保证系统中该类只有一个实例,并提供一个访问它的全局访问点,该实例被所有程序模块共享。比如在某个服务器程序中,该服务器的配置信息存放在一个文件中,这些配置数据由一个单例对象统一读取,然后服务进程中的其他对象再通过这个单例对象获取这些配置信息,这种方式简化了在复杂环境下的配置管理。

饿汉模式

就是说不管你将来用不用,程序启动时就创建一个唯一的实例对象。

class InfoMgr
{
public:
	static InfoMgr& GetInstance()
	{
		return _ins;
	}

private:
	InfoMgr()
	{

	}

	InfoMgr(const InfoMgr& i) = delete;
private:
	string _ip = "127.0.0.1";
	int _port = 80;
	size_t buffsize = 1024 * 1024;
	static InfoMgr _ins;
};

InfoMgr InfoMgr::_ins;

int main()
{
	InfoMgr& Im1 = InfoMgr::GetInstance();
}

如果这个单例对象在多线程高并发环境下频繁使用,性能要求较高,那么显然使用饿汉模式来避免资源竞争,提高响应速度更好。

懒汉模式

  • 如果单例对象构造十分耗时或者占用很多资源,比如加载插件啊, 初始化网络连接啊,读取文件啊等等,而有可能该对象程序运行时不会用到,那么也要在程序一开始就进行初始化,就会导致程序启动时非常的缓慢。 所以这种情况使用懒汉模式(延迟加载)更好。
  • A和B两个饿汉,对象初始化存在依赖关系,要求A先初始化,B在初始化,饿汉无法保证。
class InfoMgr
{
public:
	static InfoMgr& GetInstance()
	{
		if (_pins == nullptr)
		{
			_pins = new InfoMgr;
		}
		return *_pins;
	}

private:
	InfoMgr()
	{

	}

	InfoMgr(const InfoMgr& i) = delete;
private:
	string _ip = "127.0.0.1";
	int _port = 80;
	size_t buffsize = 1024 * 1024;
	static InfoMgr* _pins;
};

InfoMgr* InfoMgr::_pins = nullptr;

int main()
{
	InfoMgr& Im1 = InfoMgr::GetInstance();
}

类型转换

1. C语言中的类型转换


在C语言中,如果赋值运算符左右两侧类型不同,或者形参与实参类型不匹配,或者返回值类型与接收返回值类型不一致时,就需要发生类型转化,C语言中总共有两种形式的类型转换:隐式类型转换和显式类型转换。
 

1. 隐式类型转化:编译器在编译阶段自动进行,能转就转,不能转就编译失败

2. 显式类型转化:需要用户自己处理

隐式类型转化:整形与整形之间,整形与浮点数之间。

显式类型转化:整形与指针,指针与指针之间。

void Test()
{
	int i = 1;
	// 隐式类型转换
	double d = i;
	printf("%d, %.2f\n", i, d);
	int* p = &i;

	// 显示的强制类型转换
	int address = (int)p;
	printf("%p, %d\n", p, address);
}

内置类型与自定义类型转换

内置类型是可以隐式转换为自定义类型但需要借助成员函数。

class A
{
public:
	A(int a)
		:_a1(a)
		,_a2(a)
	{}

	A(int a, int b)
		:_a1(a)
		, _a2(b)
	{}

private:

	int _a1;
	int _a2;
};

int main()
{
    //单参数
	A aa1 = 1;
    //多参数
	A aa2 = {1, 2};
}

不想隐式类型转换可以加个explicit 关键字

自定义类型如何转换内置类型:


	int operator()()
	{
		return _a1 + _a2;
	}

这种写法是错误的因为 operator ()被仿函数占用了, 所以C++就有一种特殊的写法。

class A
{
public:
	A(int a)
		:_a1(a)
		,_a2(a)
	{}

	A(int a, int b)
		:_a1(a)
		, _a2(b)
	{}

	operator int()
	{
		return _a1 + _a2;
	}

private:

	int _a1;
	int _a2;
};

 同样加上explicit 就不能隐式类型转换。

但是还是可以显式类型转换

自定义类型转换自定义类型

两个没有关联的类型是不能进行转换的。(需要对应构造函数的支持)

2.C++强制类型转换

标准C++为了加强类型转换的可视性,引入了四种命名的强制类型转换操作符: static_cast、reinterpret_cast、const_cast、dynamic_cast
 

2.1 static_cast

static_cast用于非多态类型的转换(静态转换),编译器隐式执行的任何类型转换都可用static_cast,但它不能用于两个不相关的类型进行转换。


static_cast:对应隐式类型转换——数据的意义没有改变

2.2 reinterpret_cast

reinterpret_cast操作符通常为操作数的位模式提供较低层次的重新解释,用于将一种类型转换为另一种不同的类型
 

reinterpret_cast:对应强制类型转换——数据的意义已经发生改变

2.3 const_cast

const_cast最常用的用途就是删除变量的const属性,方便赋值

const_cast:对应的是强制类型转换中的去掉const 属性

可以看到用强制类型转换也是可以的但是C++为了规范一下增加了const_cast ,我们通过调试可以发现a1 在监视窗口已经变成了2,但是打印出来还是3。

这是因为a1 被直接替换成了常量。

所以上面场景还是建议加上 volatile 关键字,表示告诉编译器再取这个值的时候,不要替换成常量或者去寄存器取值,而是直接去内存中取。

2.4 dynamic_cast

dynamic_cast用于将一个父类对象的指针/引用转换为子类对象的指针或引用(动态转换)

向上转型:子类对象指针/引用->父类指针/引用(不需要转换,赋值兼容规则)

向下转型:父类对象指针/引用->子类指针/引用(用dynamic_cast转型是安全的)

注意:

1. dynamic_cast只能用于父类含有虚函数的类

2. dynamic_cast会先检查是否能转换成功,能成功则转换,不能则返回0

dynamic_cast为什么要先检查是否能转换成功呢?

我们来看下面场景:

class A
{
public:
	virtual void f() {}

	int _a = 1;
};
class B : public A
{
public:
	int _b = 2;
};

void fun(A* pa)
{
	// dynamic_cast会先检查是否能转换成功,能成功则转换,不能则返回
	B* pb1 = dynamic_cast<B*>(pa);

	if (pb1)
	{
		cout << pb1->_a << endl;
		cout << pb1->_b << endl;
	}
	else
	{
		cout << "转换失败"<<endl;
	}
}

int main()
{
	A a;
	B b;
	fun(&a);
	fun(&b);
	return 0;
}

可以看到_b 是随机值,如果对_b 进行写操作就会报错。所以指向父类向下转换是有越界访问风险的,指向子类转换时安全。

为什么 dynamic_cast只能用于父类含有虚函数的类

因为dynamic_cast 的本质就是在虚表中加入一些标识,然后检查标识。

3. RTTI

RTTI:Run-time Type identification的简称,即:运行时类型识别。C++通过以下方式来支持RTTI:

1. typeid运算符

2. dynamic_cast运算符

3. decltype

感谢大家的观看!

 


http://www.kler.cn/a/308406.html

相关文章:

  • 火车车厢重排问题,C++详解
  • Llama架构及代码详解
  • 什么时候需要复写hashcode()和compartTo方法
  • 爱普生SG-8200CJ可编程晶振在通信设备中的应用
  • Flutter Getx状态管理
  • 车载空气净化器语音芯片方案
  • Axure RP实战:打造高效图形旋转验证码
  • [网络]TCP/IP协议 之 数据链路层和DNS
  • GFS 分布式文件系统 GlusterFS
  • Flip动画的实现示例demo
  • 星火AI图片理解API文档
  • SpringBoot项目请求返回json空字段过滤
  • Element-UI 组件实现面包屑导航栏
  • 怎么使用ai 免费生成ppt?这4个工具可以帮忙
  • 人工智能与机器学习原理精解【20】
  • 信息安全工程师(6)网络信息安全现状与问题
  • 3D点云目标检测数据集标注工具 保姆级教程——CVAT (附json转kitti代码)
  • COMDEL电源CX2500S RF13.56MHZ RF GENERATOR手侧
  • 唯徳知识产权管理系统 DownloadFileWordTemplate 文件读取漏洞复现
  • ubuntu 遇到的一些问题及解决办法
  • rabbitmq容器化部署
  • 钻机、塔吊等大型工程设备,如何远程维护、实时采集运行数据?
  • TypeScript:高级类型
  • 主流敏捷工具scrum工具
  • linux-centos 设置系统时间
  • React学习day07-ReactRouter-抽象路由模块、路由导航、路由导航传参、嵌套路由、默认二级路由的设置、两种路由模式