当前位置: 首页 > article >正文

ollama 部署教程(window、linux)

目录

一、官网

二、安装方式一:window10版本下载

三、安装方式二:linux版本docker

四、 模型库

五、运行模型

六、API服务

七、python调用

ollama库调用

langchain调用 

requests调用

aiohttp调用

八、模型添加方式

1.线上pull

2.导入 GGUF 模型文件

3.导入 safetensors 模型文件

九、部署Open WebUI


参考链接:Ollama完整教程:本地LLM管理、WebUI对话、Python/Java客户端API应用 - 老牛啊 - 博客园 (cnblogs.com)icon-default.png?t=O83Ahttps://www.cnblogs.com/obullxl/p/18295202/NTopic2024071001

一、官网

在 macOS 上下载 Ollama - Ollama 中文

二、安装方式一:window10版本下载

安装完成没有提示。 接下来配置环境变量!

Ollama的安装过程,与安装其他普通软件并没有什么两样,安装完成之后,有几个常用的系统环境变量参数建议进行设置:

  1. OLLAMA_MODELS:模型文件存放目录,默认目录为当前用户目录(Windows 目录:C:\Users%username%.ollama\models,MacOS 目录:~/.ollama/models,Linux 目录:/usr/share/ollama/.ollama/models),如果是 Windows 系统建议修改(如:D:\OllamaModels),避免 C 盘空间吃紧
  2. OLLAMA_HOST:Ollama 服务监听的网络地址,默认为127.0.0.1,如果允许其他电脑访问 Ollama(如:局域网中的其他电脑),建议设置0.0.0.0,从而允许其他网络访问
  3. OLLAMA_PORT:Ollama 服务监听的默认端口,默认为11434,如果端口有冲突,可以修改设置成其他端口(如:8080等)
  4. OLLAMA_ORIGINS:HTTP 客户端请求来源,半角逗号分隔列表,若本地使用无严格要求,可以设置成星号,代表不受限制
  5. OLLAMA_KEEP_ALIVE:大模型加载到内存中后的存活时间,默认为5m即 5 分钟(如:纯数字如 300 代表 300 秒,0 代表处理请求响应后立即卸载模型,任何负数则表示一直存活);我们可设置成24h,即模型在内存中保持 24 小时,提高访问速度
  6. OLLAMA_NUM_PARALLEL:请求处理并发数量,默认为1,即单并发串行处理请求,可根据实际情况进行调整
  7. OLLAMA_MAX_QUEUE:请求队列长度,默认值为512,可以根据情况设置,超过队列长度请求被抛弃
  8. OLLAMA_DEBUG:输出 Debug 日志标识,应用研发阶段可以设置成1,即输出详细日志信息,便于排查问题
  9. OLLAMA_MAX_LOADED_MODELS:最多同时加载到内存中模型的数量,默认为1,即只能有 1 个模型在内存中

看看是不是已经启动了ollama。右下角图标如下 

如果没有,则去打开一下

黑窗口查看一下 版本

浏览器查看一下API服务:127.0.0.1:11434

 如果出现连接不上,则检查一下环境变量是不是配错了,是不是没有E盘(如果你照抄)。 

运行一个0.5b的qwen模型

ollama run qwen2:0.5b

看看API访问情况: 

提问:

对话: 

① system 代表系统设定(也就是告诉chatGPT他的角色)

② user 表示用户

③ assistant 表示GPT的回复

三、安装方式二:linux版本docker

Olama现已作为官方Docker镜像提供 · Olama博客 - Ollama 中文

docker run -d -v ollama:/root/.ollama -p 11435:11434 --name ollama ollama/ollama

 

进入容器内部:

docker exec -it ollama /bin/bash

 查看ollama执行

ollama

ollama serve    # 启动ollama
ollama create    # 从模型文件创建模型
ollama show        # 显示模型信息
ollama run        # 运行模型,会先自动下载模型
ollama pull        # 从注册仓库中拉取模型
ollama push        # 将模型推送到注册仓库
ollama list        # 列出已下载模型
ollama ps        # 列出正在运行的模型
ollama cp        # 复制模型
ollama rm        # 删除模型

# 本地模型列表
>ollama list
NAME            ID              SIZE    MODIFIED
gemma2:9b       c19987e1e6e2    5.4 GB  7 days ago
qwen2:7b        e0d4e1163c58    4.4 GB  10 days ago
# 删除单个模型
>ollama rm gemma2:9b
deleted 'gemma2:9b'

>ollama list
NAME            ID              SIZE    MODIFIED
qwen2:7b        e0d4e1163c58    4.4 GB  10 days ago
# 启动本地模型
>ollama run qwen2:0.5b
>>>
# 运行中模型列表
>ollama ps
NAME            ID              SIZE    PROCESSOR       UNTIL
qwen2:0.5b      6f48b936a09f    693 MB  100% CPU        4 minutes from now
# 复制本地大模型:ollama cp 本地存在的模型名 新复制模型名
>ollama cp qwen2:0.5b Qwen2-0.5B
copied 'qwen2:0.5b' to 'Qwen2-0.5B'

>ollama list
NAME                    ID              SIZE    MODIFIED
Qwen2-0.5B:latest       6f48b936a09f    352 MB  4 seconds ago
qwen2:0.5b              6f48b936a09f    352 MB  29 minutes ago
qwen2:7b                e0d4e1163c58    4.4 GB  10 days ago

四、 模型库

library (ollama.com)

五、运行模型

模型要求

 这里我们运行一个要求最小的0.5B的qwen模型。

注意这是在容器内部运行的: 

ollama run qwen2:0.5b
root@535ec4243693:/# ollama run qwen2:0.5b
pulling manifest 
pulling 8de95da68dc4... 100% ▕████████████████████████████████████▏ 352 MB                         
pulling 62fbfd9ed093... 100% ▕████████████████████████████████████▏  182 B                         
pulling c156170b718e... 100% ▕████████████████████████████████████▏  11 KB                         
pulling f02dd72bb242... 100% ▕████████████████████████████████████▏   59 B                         
pulling 2184ab82477b... 100% ▕████████████████████████████████████▏  488 B                         
verifying sha256 digest 
writing manifest 
removing any unused layers 
success 
>>> 你是谁
我是来自阿里云的超大规模语言模型——通义千问。我能够理解、生产、传播各种语言和文字,可以回答您在任
何语言或任何问题的问题。

>>> Send a message (/? for help)

六、API服务

curl --location --request POST 'http://127.0.0.1:11435/api/generate' \
--header 'User-Agent: Apifox/1.0.0 (https://apifox.com)' \
--header 'Content-Type: application/json' \
--data-raw '{
    "model": "qwen2:0.5b",
    "prompt": "你知道麦克斯韦吗"
}'
curl --location --request POST 'http://127.0.0.1:11435/api/chat' \
--header 'User-Agent: Apifox/1.0.0 (https://apifox.com)' \
--header 'Content-Type: application/json' \
--data-raw '{
    "model": "qwen2:0.5b",
    "messages": [
        {
            "role": "system",
            "content": "你是一个历史专家"
        },
        {
            "role": "user",
            "content": "东北三省是哪三个?"
        },
        {
            "role": "assistant",
            "content": "东北三省是指中国东北地区(不含内蒙古)。它包括吉林省的延边朝鲜族自治州、黑龙江省的黑河市和哈尔滨市,以及辽宁省的抚顺市、本溪市、丹东市。其中,延边州包括临山子、龙沙等13个县市。"
        },
        {
            "role": "user",
            "content": "张作霖的势力是在这里兴起的吗"
        }
    ],
    "stream": false
}'

① system 代表系统设定(也就是告诉chatGPT他的角色)

② user 表示用户

③ assistant 表示GPT的回复

七、python调用

  • temperature:用于调整生成结果的创造性程度,设置越高,生成的文本越新颖、越独特,设置越低,结果更集中。
  • stream:默认false,是否流式传输回部分进度。
  • format: 转录输出的格式,可选项包括json、str等。

ollama库调用
pip install ollama
import ollama

host = "127.0.0.1"
port = "11434"
client = ollama.Client(host=f"http://{host}:{port}")
res = client.chat(model="qwen2:0.5b",
                  messages=[{"role": "user", "content": "你是谁"}],
                  options={"temperature": 0})

print(res)
langchain调用 
pip install langchain
pip install langchain_community
from langchain_community.llms import Ollama
host="127.0.0.1"
port="11434" #默认的端口号为11434
llm=Ollama(base_url=f"http://{host}:{port}", model="qwen2:0.5b",temperature=0)
res=llm.invoke("你是谁")
print(res)
requests调用
pip install requests
host="127.0.0.1"
port="11434"
url = f"http://{host}:{port}/api/chat"
model = "qwen2:0.5b"
headers = {"Content-Type": "application/json"}
data = {
        "model": model, #模型选择
        "options": {
            "temperature": 0.  #为0表示不让模型自由发挥,输出结果相对较固定,>0的话,输出的结果会比较放飞自我
         },
        "stream": False, #流式输出
        "messages": [{
            "role": "system",
            "content":"你是谁?"
        }] #对话列表
    }
response=requests.post(url,json=data,headers=headers,timeout=60)
res=response.json()
print(res)

aiohttp调用
pip install aiohttp

Welcome to AIOHTTP — aiohttp 3.10.5 documentation

import asyncio
import json
import aiohttp

host = "127.0.0.1"
port = "11434"
url = f"http://{host}:{port}/api/chat"

headers = {
    'Content-Type': 'application/json'
}

payload = json.dumps({
    "model": "qwen2:0.5b",
    "options": {
        "temperature": 0.  # 为0表示不让模型自由发挥,输出结果相对较固定,>0的话,输出的结果会比较放飞自我
    },
    "messages": [
        {"role": "system", "content": "你是一个历史砖家,专门胡说八道,混淆历史"},
        {"role": "user", "content": "吕雉和吕不韦是啥关系?汉朝是大秦帝国的延续吗?"}
    ],
    "stream": False
})


async def main():
    start_time = asyncio.get_event_loop().time()
    async with aiohttp.ClientSession() as session:
        try:
            async with session.post(url, headers=headers, data=payload, timeout=60) as response:
                if response.status == 200:
                    data = await response.text()
                    print(data)
                    end_time = asyncio.get_event_loop().time()
                    elapsed_time = end_time - start_time
        except asyncio.TimeoutError:
            print("请求超时了")

        finally:
            print(f"耗时:0.0570秒")


if __name__ == '__main__':
    asyncio.run(main())

八、模型添加方式

1.线上pull(推荐

即上述教程采用的方式。

2.导入 GGUF 模型文件(推荐

示例:

从 HF 或者 ModeScope 下载了 GGUF 文件:qwen2-0_5b-instruct-q4_0.gguf

新建一个文件夹来存放GGUF文件,例如我存放在E:\huggingface_models\qwen2-05b-q4中,在GGUF文件的同级,创建一个文件名为Modelfile的文件,该文件的内容如下:

FROM ./qwen2-0_5b-instruct-q4_0.gguf

打开终端,执行命令导入模型文件:

ollama create 模型名称 -f ./Modelfile

导入成功之后,我们就可以通过list命名,看到名为Llama-3-8B的本地模型了,后续可以和其他模型一样进行管理了。

3.导入 safetensors 模型文件(不推荐,操作过程太慢了)

示例

https://huggingface.co/Qwen/Qwen2.5-0.5B/tree/main

从 HF 或者 ModeScope 下载了 safetensors 文件(文件目录为:Mistral-7B

git lfs install
 
git clone https://www.modelscope.cn/rubraAI/Mistral-7B-Instruct-v0.3.git Mistral-7B

然后,我们转换模型(结果:Mistral-7B-v0.3.bin):

python llm/llama.cpp/convert.py ./Mistral-7B --outtype f16 --outfile Mistral-7B-v0.3.bin

接下来,进行量化量化:

llm/llama.cpp/quantize Mistral-7B-v0.3.bin Mistral-7B-v0.3_Q4.bin q4_0

最后,通过 Ollama 导入到本地磁盘,创建Modelfile模型文件:

FROM Mistral-7B-v0.3_Q4.bin

执行导入命令,导入模型文件:ollama create 模型名称 -f ./Modelfile

>ollama create Mistral-7B-v0.3 -f ./Modelfile
transferring model data
using existing layer sha256:647a2b64cbcdbe670432d0502ebb2592b36dd364d51a9ef7a1387b7a4365781f
creating new layer sha256:459d7c837b2bd7f895a15b0a5213846912693beedaf0257fbba2a508bc1c88d9
writing manifest
success

九、部署Open WebUI

 🏡 Home | Open WebUI


http://www.kler.cn/a/316654.html

相关文章:

  • catchadmin-webman 宝塔 部署
  • 用MVVM设计模式提升WPF开发体验:分层架构与绑定实例解析
  • Java 多线程(三)—— 死锁
  • 基于OpenCV的自制Python访客识别程序
  • 大数据新视界 -- 大数据大厂之 Impala 性能飞跃:动态分区调整的策略与方法(上)(21 / 30)
  • 文件输入输出——NOI
  • 自定义类型
  • Redis五种基本数据结构的使用
  • ARM/Linux嵌入式面经(三四):CVTE
  • U盘格式化了怎么办?这4个工具能帮你恢复数据。
  • maxwell 输出消息到 kafka
  • 核心复现—计及需求响应的区域综合能源系统双层优化调度策略
  • 南大通用数仓-GCDW-学习-03-用户管理
  • 工业级5口485中继器通讯光电隔离防雷RS232HUB分共享分割器RS485集线器
  • 基于MySQL的数据库课程设计详解
  • 笔记整理—内核!启动!—linux应用编程、网络编程部分(4)linux文件属性
  • ruoyi-vue若依前端是如何防止接口重复请求
  • 计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-19
  • 【Linux 20】线程控制
  • Facebook开发者篇 - API拉取广告投放数据对接流程
  • D. Minimize the Difference (Codeforces Round 973 Div. 2)
  • 【人工智能学习笔记】7_智能语音技术基础
  • 【自定义函数】讲解
  • 香港科技大学广州|金融科技学域博士招生宣讲会——武汉大学、华中科技大学
  • 【算法】遗传算法
  • go语言基础入门(一)