当前位置: 首页 > article >正文

[深度学习]卷积神经网络CNN

1 图像基础知识

import numpy as np
import matplotlib.pyplot as plt
# 图像数据
#img=np.zeros((200,200,3))
img=np.full((200,200,3),255)
# 可视化
plt.imshow(img)
plt.show()
# 图像读取
img=plt.imread('img.jpg')
plt.imshow(img)
plt.show()

2 CNN概述

  • 卷积层conv+relu
  • 池化层pool
  • 全连接层FC/Linear

3 卷积层

 

import matplotlib.pyplot as plt
import torch
from torch import nn
# 数据
img=plt.imread('img.jpg')
print(img.shape)
# conv
img=torch.tensor(img).permute(2,0,1).unsqueeze(0).to(torch.float32)
conv=nn.Conv2d(in_channels=3,out_channels=5,kernel_size=(3,5),stride=(1,2),padding=2)
# 处理
fm=conv(img)
print(fm.shape)

4 池化层

  • 下采样:样本减少
  • 上采样(深采样):样本增多
  • 最大池化相交平均池化使用更多
  • 通常kernel_size=(3,3),stride=(2,2),padding=(自定义)

import torch
from torch import nn
# 创建数据
torch.random.manual_seed(22)
data=torch.randint(0,10,[1,3,3],dtype=torch.float32)
print(data)

# 最大池化
pool=nn.MaxPool2d(kernel_size=(2,2),stride=(1,1),padding=0)
print(pool(data))

# 平均池化
pool=nn.AvgPool2d(kernel_size=(2,2),stride=(1,1),padding=0)
print(pool(data))

5 图像分类案例(LeNet)

import torch
import torch.nn as nn
from torchvision.datasets import CIFAR10
from torchvision.transforms import ToTensor
from torchvision.transforms import Compose
import matplotlib.pyplot as plt
from torchsummary import summary
from torch import optim
from torch.utils.data import DataLoader
# 获取数据
train_dataset=CIFAR10(root='cnn_net',train=True,transform=Compose([ToTensor()]),download=True)
test_dataset=CIFAR10(root='cnn_net',train=False,transform=Compose([ToTensor()]),download=True)
print(train_dataset.class_to_idx)
print(train_dataset.data.shape)
print(test_dataset.data.shape)

plt.imshow(test_dataset.data[100])
plt.show()
print(test_dataset.targets[100])

# 模型构建
class ImageClassification(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1=nn.Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)
        self.conv2=nn.Conv2d(in_channels=6,out_channels=16,kernel_size=3,stride=1,padding=0)
        self.pool1=nn.MaxPool2d(kernel_size=2,stride=2)
        self.pool2=nn.MaxPool2d(kernel_size=2,stride=2)
        self.fc1=nn.Linear(in_features=576,out_features=120)
        self.fc2=nn.Linear(in_features=120,out_features=84)
        self.out=nn.Linear(in_features=84,out_features=10)
    def forward(self,x):
         x=self.pool1(torch.relu(self.conv1(x)))
         x=self.pool2(torch.relu(self.conv2(x)))
         x=x.reshape(x.size(0),-1)
         x=torch.relu(self.fc1(x))
         x=torch.relu(self.fc2(x))
         out=self.out(x)
         return out

model=ImageClassification()
summary(model,(3,32,32),batch_size=1)

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1             [1, 6, 30, 30]             168
         MaxPool2d-2             [1, 6, 15, 15]               0
            Conv2d-3            [1, 16, 13, 13]             880
         MaxPool2d-4              [1, 16, 6, 6]               0
            Linear-5                   [1, 120]          69,240
            Linear-6                    [1, 84]          10,164
            Linear-7                    [1, 10]             850
================================================================
Total params: 81,302
Trainable params: 81,302
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 0.08
Params size (MB): 0.31
Estimated Total Size (MB): 0.40
----------------------------------------------------------------
# 模型训练
optimizer=optim.Adam(model.parameters(),lr=0.0001,betas=[0.9,0.99])
error=nn.CrossEntropyLoss()
epoches=10
for epoch in range(epoches):
    dataloader=DataLoader(train_dataset,batch_size=2,shuffle=True)
    loss_sum=0
    num=0.1
    for x,y in dataloader:
        y_=model(x)
        loss=error(y_,y)
        loss_sum+=loss.item()
        num+=1
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        print(loss_sum/num)
# 模型保存
torch.save(model.state_dict(),'model.pth')
# 模型预测
test_dataloader=DataLoader(test_dataset,batch_size=8,shuffle=False)
model.load_state_dict(torch.load('model.pth',weights_only=False))
corr=0
num=0
for x,y in test_dataloader:
    y_=model(x)
    out=torch.argmax(y_,dim=-1)
    corr+=(out==y).sum()
    num+=len(y)
    
print(corr/num)
    

优化方向


http://www.kler.cn/a/325282.html

相关文章:

  • linux之调度管理(5)-实时调度器
  • 3步实现贪吃蛇
  • MySQL中将一个字符串字段按层级树状展开
  • 正则表达式语法详解(python)
  • Android Osmdroid + 天地图 (一)
  • Vue2教程002:Vue指令
  • docker常用命令、如何查看docker 镜像的sha256值
  • 算法分享——《滑动窗口》
  • 等保测评中的数据安全风险评估:企业实战
  • COSCon'24 第九届中国开源年会议题征集正式启动
  • RVC变声器入门
  • Linux信号学习三步走及知识脉络
  • BaseCTF2024 web
  • Qt播放音效或音乐使用QSoundEffect类
  • 小程序-基础知识1
  • 【muduo源码分析】「阻塞」「非阻塞」「同步」「异步」
  • BeautifulSoup4在爬虫中的使用
  • 以旅游购物贸易方式报关出口的货物是什么意思
  • 招联金融内推-2025校招
  • Python_itertools
  • Wireshark_流量分析
  • Go基础学习05-数组和切片关系深度解析
  • 主数据管理的误区有哪些?
  • 数据结构:二叉树的遍历和线索二叉树
  • 创建数据/采集数据+从PI数据到PC+实时UI+To PLC
  • 基于Vue3组件封装的技巧分享