双指针---(部分地更新)
双指针
复写零
给你一个长度固定的整数数组 arr
,请你将该数组中出现的每个零都复写一遍,并将其余的元素向右平移。
注意:请不要在超过该数组长度的位置写入元素。请对输入的数组 就地 进行上述修改,不要从函数返回任何东西。
示例 1:
输入:arr = [1,0,2,3,0,4,5,0]
输出:[1,0,0,2,3,0,0,4]
解释:调用函数后,输入的数组将被修改为:[1,0,0,2,3,0,0,4]
示例 2:
输入:arr = [1,2,3]
输出:[1,2,3]
解释:调用函数后,输入的数组将被修改为:[1,2,3]
提示:
1 <= arr.length <= 104
0 <= arr[i] <= 9
题目解析:
特别需要注意的是就地
算法原理:
代码如下:
class Solution
{
public:
void duplicateZeros(vector<int>& arr)
{
//1.先找到最后一个数
int cur=0,dest=-1,n=arr.size();
while(cur<n)
{
if(arr[cur]) dest++;
else dest+=2;
if(dest>=n-1) break;
cur++;
}
//2.处理边界情况
if(dest==n)
{
arr[n-1]=0;
cur--;
dest-=2;
}
//3.从后往前进行复写操作
while(cur>=0)
{
if(arr[cur]) arr[dest--]=arr[cur--];
else
{
arr[dest--]=0;
arr[dest--]=0;
cur--;
}
}
}
};
写这类题目的时候,不要在脑袋里面空想,要动手动笔去思考,像下面这样:
更详细点来说:
如果「从前向后」进⾏原地复写操作的话,由于 0 的出现会复写两次,导致没有复写的数「被覆 盖掉」。因此我们选择「从后往前」的复写策略。
但是「从后向前」复写的时候,我们需要找到「最后⼀个复写的数」,因此我们的⼤体流程分两 步:
i. 先找到最后⼀个复写的数;
ii. 然后从后向前进⾏复写操作。
算法流程:
a. 初始化两个指针 cur = 0 , dest = -1 ;
b. 找到最后⼀个复写的数:
i. 当 cur < n 的时候,⼀直执⾏下⾯循环:
• 判断 cur 位置的元素:
◦ 如果是 0 的话, dest 往后移动两位;
◦ 否则, dest 往后移动⼀位。
• 判断 dest 时候已经到结束位置,如果结束就终⽌循环;
• 如果没有结束, cur++ ,继续判断。
c. 判断 dest 是否越界到 n 的位置:
i. 如果越界,执⾏下⾯三步:
- n - 1 位置的值修改成 0 ;
- cur 向移动⼀步;
- dest 向前移动两步。
d. 从 cur 位置开始往前遍历原数组,依次还原出复写后的结果数组:
i. 判断 cur 位置的值:
- 如果是 0 : dest 以及 dest - 1 位置修改成 0 , dest -= 2 ;
- 如果⾮零: dest 位置修改成 0 , dest -= 1 ;
ii. cur-- ,复写下⼀个位置。
快乐数
编写一个算法来判断一个数 n
是不是快乐数。
「快乐数」 定义为:
- 对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。
- 然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。
- 如果这个过程 结果为 1,那么这个数就是快乐数。
如果 n
是 快乐数 就返回 true
;不是,则返回 false
。
示例 1:
输入:n = 19
输出:true
解释:
12 + 92 = 82
82 + 22 = 68
62 + 82 = 100
12 + 02 + 02 = 1
示例 2:
输入:n = 2
输出:false
提示:
1 <= n <= 231 - 1
题目解析:
这个题目让我们想到了带环链表
就可以考虑快慢指针来解决
算法原理:
这个题目不需要考虑是否遇不到1,或者是循环,我们可以想到鸽巢原理
联系到这个题目,我们可以知道如果哪个数回不到1,那么它一定会落到哪个环里
代码如下:
class Solution
{
int Add(int n)
{
int sum=0;
while(n)
{
int t=n%10;
sum+=t*t;
n/=10;
}
return sum;
}
public:
bool isHappy(int n)
{
int slow =n,fast=Add(n);
while(slow!=fast)
{
slow=Add(slow);
fast=Add(Add(fast));
}
return slow==1;
}
};
更进一步来说:
题⽬分析:
为了⽅便叙述,将「对于⼀个正整数,每⼀次将该数替换为它每个位置上的数字的平⽅和」这⼀个 操作记为 x 操作;
题⽬告诉我们,当我们不断重复 x 操作的时候,计算⼀定会「死循环」,死的⽅式有两种:
▪ 情况⼀:⼀直在 1 中死循环,即 1 -> 1 -> 1 -> 1…
▪ 情况⼆:在历史的数据中死循环,但始终变不到 1
由于上述两种情况只会出现⼀种,因此,只要我们能确定循环是在「情况⼀」中进⾏,还是在「情 况⼆」中进⾏,就能得到结果。
简单证明:
a. 经过⼀次变化之后的最⼤值 9^2 * 10 = 810 ( 2^31-1=2147483647 。选⼀个更⼤的最 ⼤ 9999999999 ),也就是变化的区间在 [1, 810] 之间;
b. 根据「鸽巢原理」,⼀个数变化 811 次之后,必然会形成⼀个循环;
c. 因此,变化的过程最终会⾛到⼀个圈⾥⾯,因此可以⽤「快慢指针」来解决。
解法(快慢指针):
算法思路:
根据上述的题⽬分析,我们可以知道,当重复执⾏ x 的时候,数据会陷⼊到⼀个「循环」之中。
⽽「快慢指针」有⼀个特性,就是在⼀个圆圈中,快指针总是会追上慢指针的,也就是说他们总会 相遇在⼀个位置上。如果相遇位置的值是 1 ,那么这个数⼀定是快乐数;如果相遇位置不是 1 的话,那么就不是快乐数。
补充知识:如何求⼀个数 n 每个位置上的数字的平⽅和。
a. 把数 n 每⼀位的数提取出来:
循环迭代下⾯步骤:
i. int t = n % 10 提取个位;
ii. n /= 10 ⼲掉个位;
直到 n 的值变为 0 ;
b. 提取每⼀位的时候,⽤⼀个变量 sum 记录这⼀位的平⽅与之前提取位数的平⽅和
▪ sum = sum + t * t
盛水最多的容器
给定一个长度为 n
的整数数组 height
。有 n
条垂线,第 i
条线的两个端点是 (i, 0)
和 (i, height[i])
。
找出其中的两条线,使得它们与 x
轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
**说明:**你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1]
输出:1
提示:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
算法原理
代码如下:
class Solution
{
public:
int maxArea(vector<int>& height)
{
int left=0,right=height.size()-1,ret=0;
while(left<right)
{
int v=min(height[left],height[right])*(right-left);
ret=max(ret,v);
//移动指针
if(height[left]<height[right]) left++;
else right--;
}
return ret;
}
};
进一步来说:
解法⼀(暴⼒求解)(会超时):
算法思路:
枚举出能构成的所有容器,找出其中容积最⼤的值。
◦ 容器容积的计算⽅式:
设两指针 i , j ,分别指向⽔槽板的最左端以及最右端,此时容器的宽度为 j - i 。由于 容器的⾼度由两板中的短板决定,因此可得容积公式 : v = (j - i) * min( height[i], height[j])
算法代码:
class Solution {
public:
int maxArea(vector<int>& height) {
int n = height.size();
int ret = 0;
// 两层 for 枚举出所有可能出现的情况
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
// 计算容积,找出最⼤的那⼀个
ret = max(ret, min(height[i], height[j]) * (j - i));
}
}
return ret;
}
};
解法⼆(对撞指针):
算法思路:
设两个指针 left , right 分别指向容器的左右两个端点,此时容器的容积 :
v = (right - left) * min( height[right], height[left])
容器的左边界为 height[left] ,右边界为 height[right] 。
为了⽅便叙述,我们假设「左边边界」⼩于「右边边界」。
如果此时我们固定⼀个边界,改变另⼀个边界,⽔的容积会有如下变化形式:
◦ 容器的宽度⼀定变⼩。
◦ 由于左边界较⼩,决定了⽔的⾼度。如果改变左边界,新的⽔⾯⾼度不确定,但是⼀定不会超 过右边的柱⼦⾼度,因此容器的容积可能会增⼤。
◦ 如果改变右边界,⽆论右边界移动到哪⾥,新的⽔⾯的⾼度⼀定不会超过左边界,也就是不会 超过现在的⽔⾯⾼度,但是由于容器的宽度减⼩,因此容器的容积⼀定会变⼩的。
由此可⻅,左边界和其余边界的组合情况都可以舍去。所以我们可以 left++ 跳过这个边界,继 续去判断下⼀个左右边界。
当我们不断重复上述过程,每次都可以舍去⼤量不必要的枚举过程,直到 left 与 right 相 遇。期间产⽣的所有的容积⾥⾯的最⼤值,就是最终答案
有效三角形的个数
给定一个包含非负整数的数组 nums
,返回其中可以组成三角形三条边的三元组个数。
示例 1:
输入: nums = [2,2,3,4]
输出: 3
解释:有效的组合是:
2,3,4 (使用第一个 2)
2,3,4 (使用第二个 2)
2,2,3
示例 2:
输入: nums = [4,2,3,4]
输出: 4
提示:
1 <= nums.length <= 1000
0 <= nums[i] <= 1000
这道题也是同理,不能够用脑袋空想,需要动手去梳理逻辑关系
如下图:
题目解析
这里需要注意的是不同顺序但是相同的数字也被算作是一种
算法原理
代码如下:
class Solution
{
public:
int triangleNumber(vector<int>& nums)
{
//1.优化
sort(nums.begin(),nums.end());
//2.利用双指针解决问题
int ret=0,n=nums.size();
for(int i=n-1;i>=2;i--)//先固定最大的数
{
//利用双指针快速统计符合要求的三元组的个数
int left=0,right=i-1;
while(left<right)
{
if(nums[left]+nums[right]>nums[i])
{
ret+=right-left;
right--;
}
else
{
left++;
}
}
}
return ret;
}
};
进一步来说:
解法⼀(暴⼒求解)(会超时):
算法思路:
三层 for 循环枚举出所有的三元组,并且判断是否能构成三⻆形。
虽然说是暴⼒求解,但是还是想优化⼀下:
判断三⻆形的优化:
▪ 如果能构成三⻆形,需要满⾜任意两边之和要⼤于第三边。但是实际上只需让较⼩的两条边 之和⼤于第三边即可。、
▪ 因此我们可以先将原数组排序,然后从⼩到⼤枚举三元组,⼀⽅⾯省去枚举的数量,另⼀⽅ ⾯⽅便判断是否能构成三⻆形。
算法代码:
class Solution {
public:
int triangleNumber(vector<int>& nums) {
// 1. 排序
sort(nums.begin(), nums.end());
int n = nums.size(), ret = 0;
// 2. 从⼩到⼤枚举所有的三元组
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
for (int k = j + 1; k < n; k++) {
// 当最⼩的两个边之和⼤于第三边的时候,统计答案
if (nums[i] + nums[j] > nums[k])
ret++;
}
}
}
return ret;
}
};
解法⼆(排序 + 双指针):
算法思路:
先将数组排序。
根据「解法⼀」中的优化思想,我们可以固定⼀个「最⻓边」,然后在⽐这条边⼩的有序数组中找 出⼀个⼆元组,使这个⼆元组之和⼤于这个最⻓边。由于数组是有序的,我们可以利⽤「对撞指 针」来优化。
设最⻓边枚举到 i 位置,区间 [left, right] 是 i 位置左边的区间(也就是⽐它⼩的区 间):
◦ 如果 nums[left] + nums[right] > nums[i] :
▪ 说明 [left, right - 1] 区间上的所有元素均可以与 nums[right] 构成⽐ nums[i] ⼤的⼆元组
▪ 满⾜条件的有 right - left 种
▪ 此时 right 位置的元素的所有情况相当于全部考虑完毕, right-- ,进⼊下⼀轮判断
◦ 如果 nums[left] + nums[right] <= nums[i] :
▪ 说明 left 位置的元素是不可能与 [left + 1, right] 位置上的元素构成满⾜条件 的⼆元组
▪ left 位置的元素可以舍去, left++ 进⼊下轮循环
和为s的两个数字
题⽬描述:
输⼊⼀个递增排序的数组和⼀个数字 s ,在数组中查找两个数,使得它们的和正好是 s 。如果有多 对数字的和等于 s ,则输出任意⼀对即可。
⽰例 1:
输⼊: nums = [2,7,11,15], target = 9
输出: [2,7] 或者 [7,2]
找 出⼀个⼆元组,使这个⼆元组之和⼤于这个最⻓边。由于数组是有序的,我们可以利⽤「对撞指 针」来优化。
设最⻓边枚举到 i 位置,区间 [left, right] 是 i 位置左边的区间(也就是⽐它⼩的区 间):
◦ 如果 nums[left] + nums[right] > nums[i] :
▪ 说明 [left, right - 1] 区间上的所有元素均可以与 nums[right] 构成⽐ nums[i] ⼤的⼆元组
▪ 满⾜条件的有 right - left 种
▪ 此时 right 位置的元素的所有情况相当于全部考虑完毕, right-- ,进⼊下⼀轮判断
◦ 如果 nums[left] + nums[right] <= nums[i] :
▪ 说明 left 位置的元素是不可能与 [left + 1, right] 位置上的元素构成满⾜条件 的⼆元组
▪ left 位置的元素可以舍去, left++ 进⼊下轮循环