当前位置: 首页 > article >正文

用Sklearn和Statsmodels来做linear_regression和Logistic_regression注意事项

用Sklearn和Statsmodels来做linear_regression和Logistic_regression注意事项,区别。主要在于 intercept 项,和 regularization。

一、Linear regression 的截距项

又叫 intercept, constant, bias

使用 statsmodels 进行线性回归时,通常需要手动添加常数项(即截距),因为 statsmodels 的 OLS 默认不包括截距。这可以通过使用 statsmodels.tools.add_constant 函数来实现。例如,如果你有一个因变量 y 和一个自变量 X,你可以这样添加常数项:

import statsmodels.api as sm

# 假设 X 和 y 已经定义
X = sm.add_constant(X)  # 添加常数项
model = sm.OLS(y, X).fit()

这样,X 中就会包含一个值全为 1 的列,它代表了截距项。在 statsmodels 中,add_constant 方法是添加常数项的标准做法 。

而在 scikit-learn 中,当你使用 LinearRegression 类时,是否添加常数项(截距)是由类初始化时的 fit_intercept 参数决定的。如果 fit_intercept=True(默认值),则 scikit-learn 会自动为你的模型添加常数项

from sklearn.linear_model import LinearRegression

# 创建线性回归模型实例,自动添加常数项
model = LinearRegression(fit_intercept=True)
model.fit(X, y)

在这种情况下,你不需要手动添加常数项,因为 scikit-learn 已经为你处理了 。

二、Logistic Regression 的截距项和L2 Regularization

在进行逻辑回归时,scikit-learn 和 statsmodels 这两个库有一些关键的区别,特别是在截距项和正则化方面。

截距项

• scikit-learn:默认情况下,scikit-learn 的 LogisticRegression 类会添加一个截距项。如果你想显式地控制是否添加截距项,可以通过设置 fit_intercept 参数为 True 或 False 来实现。
• statsmodels:
使用 smf.glm (广义线性模型)时,是默认自动加一个截距项的!Logistic regression 是 GLM 的特例,其中响应变量是二元的,并且遵循二项分布。链接函数通常是 logit 函数。

naive_model = smf.glm('default~student+balance+income', data=train_default, family=sm.families.Binomial()).fit()
print(naive_model.summary())

在这里插入图片描述

(别的:在 statsmodels 中,当你使用 Logit 函数时,默认情况下不会包括截距项。如果你需要包括截距项,需要在模型公式中显式地包含它,例如使用 “y ~ x1 + x2 + const” 这样的公式,其中 const 就是截距项。这是 AI 说的,我没用过。)

正则化

• scikit-learn:scikit-learn 的 LogisticRegression 类支持 L1 和 L2 正则化,这可以通过设置 penalty 参数为 ‘l1’ 或 ‘l2’ 来实现。L1 正则化可以导致稀疏解,而 L2 正则化则不会。正则化的强度可以通过 C 参数来控制,C 的值越小,正则化强度越大。
scikit-learn 的 LogisticRegression 类中,默认的正则化是 L2 正则化 。这意味着它会使用一个正则化项,即系数的平方和,来防止模型过拟合。L2 正则化有助于处理特征多重共线性问题,并能够使模型参数更加平滑。
默认情况下,LogisticRegression 的 penalty 参数设置为 ‘l2’,同时 solver 参数默认为 ‘lbfgs’,它是一种优化算法,用于找到损失函数的最小值。C 参数控制正则化的强度,其默认值是 1.0,较小的 C 值意味着更强的正则化(即更平滑的模型),而较大的 C 值则意味着更弱的正则化(允许模型更复杂)。fit_intercept 参数默认为 True,表示模型会包含截距项。
如果你希望使用 L1 正则化或者不使用正则化,可以通过调整 penalty 参数来实现。例如,设置 penalty=‘l1’ 可以应用 L1 正则化,而设置 penalty=‘none’ 则不使用正则化。不过需要注意的是,当使用 liblinear 求解器时,不支持不使用正则化的情况。
此外,LogisticRegression 还支持弹性网正则化(‘elasticnet’),它是 L1 和 L2 正则化的组合,通过 l1_ratio 参数来控制两者的比例。

• statsmodels:statsmodels 的逻辑回归实现默认情况下不包括正则化。如果你需要应用正则化,可能需要通过手动修改设计矩阵或使用其他方法来实现。

·

如果你需要更多的自动化和快速原型设计,scikit-learn 可能是更好的选择。而如果你需要更深入地了解模型的细节和定制,statsmodels 可能更适合你的需求。


http://www.kler.cn/a/330836.html

相关文章:

  • 51单片机——串口通信(重点)
  • Ubuntu上安装Apache Spark
  • 【C++】B2106 矩阵转置
  • 论文导读 | 数据库中的连接操作
  • 源代码编译安装X11及相关库、vim,配置vim(2)
  • MySQL和Hive中的行转列、列转行
  • 【CSS/HTML】圣杯布局和双飞翼布局实现两侧宽度固定,中间宽度自适应及其他扩展实现
  • db-gpt部署问题
  • 【数据库】 MongoDB 撤销用户的角色和权限
  • leetcode-32. 最长有效括号
  • 软件测试学习笔记丨Mock的价值与实战
  • centos7系统安装宝塔面板
  • C++之多线程
  • 14.数据结构与算法-栈的表示和实现(顺序栈和链栈)/栈和递归
  • C/C++进阶(一)--内存管理
  • Java-并发基础
  • Nacos笔记
  • 论文笔记(四十七)Diffusion Policy: Visuomotor Policy
  • 【C++复习】C++11经典语法
  • 将模板引擎用于 Express
  • 65 注意力分数_by《李沐:动手学深度学习v2》pytorch版
  • 前端开发技术框架选型
  • 每日一题|1928. 规定时间内到达终点的最小花费|动态规划、最小路径
  • 强弱依赖(含示例)
  • ANTLR4 与 flex/bision、lex/yacc 的比较
  • Electron 进程通信