SAO-LSSVM分类预测 | SAO-LSSVM雪消融算法优化最小二乘支持向量机多特征分类预测
SAO-LSSVM分类预测 | SAO-LSSVM雪消融算法优化最小二乘支持向量机多特征分类预测
目录
- SAO-LSSVM分类预测 | SAO-LSSVM雪消融算法优化最小二乘支持向量机多特征分类预测
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果
基本介绍
1.Matlab实现SAO-LSSVM雪消融算法优化最小二乘支持向量机多特征分类预测,运行环境Matlab2018b及以上;
2.输入12个特征,输出分4类,可视化展示分类准确率,可在下载区获取数据和程序内容。
3.算法优化LSSVM参数为:sig,gamma。
4.excel数据集,main为主程序,其他为函数文件,无需运行,分类效果如下:
注:程序和数据放在一个文件夹。
程序设计
- 完整源码和数据获取方式资源下载SAO-LSSVM雪消融算法优化最小二乘支持向量机多特征分类预测。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 读取数据
res = xlsread('data.xlsx');
%% 分析数据
num_class = length(unique(res(:, end))); % 类别数(Excel最后一列放类别)
num_dim = size(res, 2) - 1; % 特征维度
num_res = size(res, 1); % 样本数(每一行,是一个样本)
num_size = 0.7; % 训练集占数据集的比例
res = res(randperm(num_res), :); % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1; % 标志位为1,打开混淆矩阵(要求2018版本及以上)
%% 设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];
%% 划分数据集
for i = 1 : num_class
mid_res = res((res(:, end) == i), :); % 循环取出不同类别的样本
mid_size = size(mid_res, 1); % 得到不同类别样本个数
mid_tiran = round(num_size * mid_size); % 得到该类别的训练样本个数
end
%% 数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';
%% 得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501