反归一化 from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import MinMaxScaler
# 数据归一化 scaler = MinMaxScaler(feature_range=(0, 1)) scaler.fit_transform(dataset) train = scaler.transform(train) val = scaler.transform(val) test = scaler.transform(test)
data_range = MinMaxScaler.data_range_ data_min = MinMaxScaler.data_min_ outputs = outputs * data_range[0] + data_min[0] y_val = y_val * data_range[0] + data_min[0]