当前位置: 首页 > article >正文

Spark常用代码

Spark常用代码

1. 创建RDD方法

有两个不同的方式可以创建新的RDD

from pyspark import SparkConf, SparkContext


conf = SparkConf().setAppName("createWholeTextFile").setMaster("local[*]")
sc = SparkContext(conf=conf)

file_rdd = sc.textFile("/export/workspace/bigdata-pyspark_2.3.0/PySpark-SparkCore_2.3.0/data/ratings100")
print("file_rdd numpartitions {}".format(file_rdd.getNumPartitions())) # 100 100个文件100个分区

# 用于读取小文件并自动压缩分区
wholefile_rdd = sc.wholeTextFiles("/export/workspace/bigdata-pyspark_2.3.0/PySpark-SparkCore_2.3.0/data/ratings100")
print("wholefile_rdd numpartitions {}".format(wholefile_rdd.getNumPartitions())) # 2 把100个文件压缩到2个分区

result = wholefile_rdd.take(1)
# print(result) # (location, value)的形式
# 获取前面的路径
path_list = wholefile_rdd.map(lambda x: x[0]).collect()
sc.stop()

2. 专门读取小文件wholeTextFiles

from pyspark import SparkConf, SparkContext


conf = SparkConf().setAppName("createWholeTextFile").setMaster("local[*]")
sc = SparkContext(conf=conf)

file_rdd = sc.textFile("/export/workspace/bigdata-pyspark_2.3.0/PySpark-SparkCore_2.3.0/data/ratings100")
print("file_rdd numpartitions {}".format(file_rdd.getNumPartitions())) # 100 100个文件100个分区

# 用于读取小文件并自动压缩分区
wholefile_rdd = sc.wholeTextFiles("/export/workspace/bigdata-pyspark_2.3.0/PySpark-SparkCore_2.3.0/data/ratings100")
print("wholefile_rdd numpartitions {}".format(wholefile_rdd.getNumPartitions())) # 2 把100个文件压缩到2个分区

result = wholefile_rdd.take(1)
# print(result) # (location, value)的形式
# 获取前面的路径
path_list = wholefile_rdd.map(lambda x: x[0]).collect()
sc.stop()

3. rdd的分区数

from pyspark import SparkConf, SparkContext


if __name__ == '__main__':
    # spark入口申请资源
    conf = SparkConf().setAppName("createRDD").setMaster("local[5]")
    # 应该充分使用资源,线程数设置成CPU核心数的2-3倍
    # conf.set("spark.default.parallelism",  10)
    sc = SparkContext(conf=conf)

    # 创建rdd的第一种方法
    collection_rdd = sc.parallelize([1, 2, 3, 4, 5, 6])
    print(collection_rdd.collect())
    # 获取分区数
    print("rdd number of partitions ", collection_rdd.getNumPartitions())
    # 解释:
    # 设置了5个核心,默认是5个分区,如果是local[*] 默认是2个分区
    #  conf.set("spark.default.parallelism", 10)优先使用此值
    # 如果sc.parallelize也设置了分区,那么最优先使用api设置的分区数

    # 如果是读取文件夹下面的文件,sc.textFile, minPartitions失效,有多少个文件就有多少个分区,下面100个文件返回了100个分区
    file_rdd = sc.textFile("/export/workspace/bigdata-pyspark_2.3.0/PySpark-SparkCore_2.3.0/data/ratings100",
                           minPartitions=3)
    print("file_rdd numpartitions {}".format(file_rdd.getNumPartitions()))  # 100 100个文件100个分区

    # 用于读取小文件并自动压缩分区,minPartitions参数是生效的。
    wholefile_rdd = sc.wholeTextFiles("/export/workspace/bigdata-pyspark_2.3.0/PySpark-SparkCore_2.3.0/data/ratings100",
                                      minPartitions=3)
    print("wholefile_rdd numpartitions {}".format(wholefile_rdd.getNumPartitions()))  # 2 把100个文件压缩到3个分区

    # 打印不同分区数据
    collection_rdd = sc.parallelize([1, 2, 3, 4, 5, 6], numSlices=7)
    print("collection_rdd number of partitions ", collection_rdd.getNumPartitions())
    # 6个数据7个分区,有一个分区是空的 per partition content [[], [1], [2], [3], [4], [5], [6]]
    print("per partition content", collection_rdd.glom().collect())

    # 关闭spark context
    sc.stop()

4. Transformation函数以及Action函数

4.1 Transformation函数

由一个RDD转换成另一个RDD,并不会立即执行的。是惰性,需要等到Action函数来触发。

单值类型valueType

  • map
  • flatMap
  • filter
  • mapValue

单值类型函数的demo:

"""
单Value类型RDD转换算子的演示
"""
import re

from pyspark import SparkConf, SparkContext


if __name__ == '__main__':
    conf = SparkConf().setAppName("mini").setMaster("local[*]")
    sc = SparkContext(conf=conf)
    sc.setLogLevel("WARN")

    # map操作
    rdd1 = sc.parallelize([1, 2, 3, 4, 5, 6])
    rdd_map = rdd1.map(lambda x: x*2)
    print(rdd_map.glom().collect())
    # [[2, 4, 6], [8, 10, 12]]

    # filter操作
    print(rdd1.glom().collect())
    print(rdd1.filter(lambda x: x > 3).glom().collect())

    # flatMap
    rdd2 = sc.parallelize(["    hello      you", "hello me   "])
    print(rdd2.flatMap(lambda word: re.split("\s+", word.strip())).collect())

    # groupBy
    x = sc.parallelize([1, 2, 3])
    # [('A', [1, 3]), ('B', [2])]
    y = x.groupBy(lambda x: 'A' if x % 2 == 1 else 'B')
    print(y.mapValues(list).collect())

    # mapValue 对value进行操作
    # [('a', 6), ('b', 15)]
    x1 = sc.parallelize([("a", [1, 2, 3]), ("b", [4, 5, 6])])
    print(x1.mapValues(lambda x: sum(x)).collect())

双值类型DoubleValueType

  • intersection
  • union
  • difference
  • distinct

双值类型函数的demo:


"""
双Value类型RDD转换算子的演示
"""
import re

from pyspark import SparkConf, SparkContext


if __name__ == '__main__':
    conf = SparkConf().setAppName("mini").setMaster("local[*]")
    sc = SparkContext(conf=conf)
    sc.setLogLevel("WARN")

    # map操作
    rdd1 = sc.parallelize([1, 2, 3, 4, 5])
    rdd2 = sc.parallelize([1, 2, 3, 4, 5, 6, 7, 8])
    # [1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 7, 8]
    union_rdd = rdd1.union(rdd2)
    print(union_rdd.collect())
    # [4, 1, 5, 2, 3]
    print(rdd1.intersection(rdd2).collect())
    # [8, 6, 7]
    print(rdd2.subtract(rdd1).collect())
    # [4, 8, 1, 5, 2, 6, 3, 7]
    print(union_rdd.distinct().collect())
    # [[4, 8], [1, 5], [2, 6], [3, 7]]
    print(union_rdd.distinct().glom().collect())

Key-Value类型

  • reduceByKey
  • groupByKey
  • sortByKey
  • combineByKey是底层API
  • foldByKey
  • aggregateByKey

Key-Value类型函数demo

"""
key-Value类型RDD转换算子的演示
"""
from pyspark import SparkConf, SparkContext


if __name__ == '__main__':
    conf = SparkConf().setAppName("mini").setMaster("local[*]")
    sc = SparkContext(conf=conf)
    sc.setLogLevel("WARN")

    # groupByKey
    rdd1 = sc.parallelize([("a", 1), ("b", 2)])
    rdd2 = sc.parallelize([("c", 1), ("b", 3)])
    rdd3 = rdd1.union(rdd2)
    key1 = rdd3.groupByKey()
    print("groupByKey", key1.collect())
    key2 = key1.mapValues(list)
    print(key2.collect())
    # [('b', [2, 3]), ('c', [1]), ('a', [1])]

    # reduceByKey
    key3 = rdd3.reduceByKey(lambda x, y: x+y)
    print(key3.collect())
    # [('b', 5), ('c', 1), ('a', 1)]

    # sortByKey
    print(key3.map(lambda x: (x[1], x[0])).sortByKey(False).collect())
    # [(5, 'b'), (1, 'c'), (1, 'a')].

    # countByValue
    print(sorted(sc.parallelize([1, 2, 1, 2, 2]).countByValue().items()))
    # [(1, 2), (2, 3)]

4.2 Action函数

立即执行的,返回一个非RDD的东西。

  • collect
  • saveAsTextFile
  • first
  • take
  • takeSample
  • top

下面是action相关函数的示例代码

from pyspark import SparkConf, SparkContext
import operator


if __name__ == '__main__':
    conf = SparkConf().setAppName("mini").setMaster("local[*]")
    sc = SparkContext(conf=conf)
    sc.setLogLevel("WARN")

    rdd1 = sc.parallelize([("a", 1), ("b", 2)])
    rdd2 = sc.parallelize([("c", 1), ("b", 3)])

    print(rdd1.first())
    # ('a', 1)
    # print(rdd1.take(2))
    # spark 2.3.0报错
    print(rdd1.top(2))
    # [('b', 2), ('a', 1)]
    print(rdd1.collect())
    # [('a', 1), ('b', 2)]

    # reduce
    rdd3 = sc.parallelize([1, 2, 3, 4, 5])
    # 累加 15
    print(rdd3.reduce(operator.add))
    # 累乘 120
    print(rdd3.reduce(operator.mul))

    # takeSample 取样操作
    rdd4 = sc.parallelize([i for i in range(10)])
    print(rdd4.collect())
    print(rdd4.takeSample(True, 3, 123))
    # [6, 9, 3]

4.3 其他常见的函数

from pyspark import SparkConf, SparkContext
import operator


def f(iterator):
    for x in iterator:
        print(x)


def f2(iterator):
    yield sum(iterator)


if __name__ == '__main__':
    conf = SparkConf().setAppName("mini").setMaster("local[*]")
    sc = SparkContext(conf=conf)
    sc.setLogLevel("WARN")

    rdd1 = sc.parallelize([("a", 1), ("b", 2)])
    print(rdd1.getNumPartitions())
    print(rdd1.glom().collect())

    # foreach
    print(rdd1.foreach(lambda x: print(x)))
    # foreachPartition
    print(rdd1.foreachPartition(f))

    rdd2 = sc.parallelize([1, 2,  3, 4, 5])
    print(rdd2.glom().collect())
    # map
    print(rdd2.map(lambda x: x * 2).collect())
    # [2, 4, 6, 8, 10]
    # mapPartitions
    print(rdd2.mapPartitions(f2).collect())
    # [3, 12]

5. 重分区函数

分区调整的API

  • repartition 对单值的rdd进行重新分区,repartition调用的是coalesce的api,shuffle传入了True。
  • coalesce ,如果shuffle为False情况下增加分区,返回的值是不会改变的。
  • partitionBy,只能对Key-Value类型的rdd进行操作。
from pyspark import SparkConf, SparkContext
import operator


def f(iterator):
    for x in iterator:
        print(x)


def f2(iterator):
    yield sum(iterator)


if __name__ == '__main__':
    conf = SparkConf().setAppName("mini").setMaster("local[*]")
    sc = SparkContext(conf=conf)
    sc.setLogLevel("WARN")

    rdd1 = sc.parallelize([1, 2, 3, 4, 5, 6], 3)
    print(rdd1.glom().collect())
    # [[1, 2], [3, 4], [5, 6]]

    # repartition 含有shuffle
    print(rdd1.repartition(5).glom().collect())
    # [[], [1, 2], [5, 6], [3, 4], []]

    # coalesce没有shuffle
    print(rdd1.coalesce(2).glom().collect())
    # [[1, 2], [3, 4, 5, 6]]
    print(rdd1.coalesce(5).glom().collect())
    # [[1, 2], [3, 4], [5, 6]] 没有shuffle情况下,增加分区也是无效的
    # 相当于调用了repartition方法,进行shuffle
    print(rdd1.coalesce(5, True).glom().collect())
    # [[], [1, 2], [5, 6], [3, 4], []]

    # partitionBy 只能对key-value类型的rdd进行操作,其他类型报错
    rdd2 = rdd1.map(lambda x: (x, x))
    print(rdd2.glom().collect())
    # [[(1, 1), (2, 2)], [(3, 3), (4, 4)], [(5, 5), (6, 6)]]
    print(rdd2.partitionBy(2).glom().collect())
    # [[(2, 2), (4, 4), (6, 6)], [(1, 1), (3, 3), (5, 5)]]
    # rdd1.partitionBy(2) # 报错

6. 聚合函数

6.1 基础聚合函数

对单值rdd进行操作的聚合函数。

  • reduce:聚合计算,把rdd的元素安装指定运算法操作,得到一个值
  • fold:能指定初始值,以及同时指定分区内,和分区间操作函数(两者设定一样)
  • aggregate:能指定初始值,以及同时指定分区内,和分区间操作函数(两者可以分别设定)
from pyspark import SparkConf, SparkContext
import operator


def f(iterator):
    for x in iterator:
        print(x)


def f2(iterator):
    yield sum(iterator)


if __name__ == '__main__':
    conf = SparkConf().setAppName("mini").setMaster("local[*]")
    sc = SparkContext(conf=conf)
    sc.setLogLevel("WARN")

    rdd1 = sc.parallelize([1, 2, 3, 4, 5, 6], 3)
    print(rdd1.getNumPartitions())
    print(rdd1.glom().collect())
    # 21

    # reduce 聚合计算
    print(rdd1.reduce(operator.add))

    # fold 聚合计算
    print(rdd1.glom().collect())
    # [[1, 2], [3, 4], [5, 6]]
    print(rdd1.fold(1, operator.add))
    # 25
    # 解释:一共3个分区,每个分区内+1,然后分区间再+1. 一共加了4. 所以是25。

    # aggregate聚合
    rdd2 = sc.parallelize([1, 2, 3, 4])
    print(rdd2.glom().collect())
    # [[1, 2], [3, 4]]
    print(rdd2.aggregate(1, operator.add, operator.mul))
    # 分区内用加法,分区间用乘法
    # (1+2+1)*(3+4+1)*1 = 32

6.2 Key-Value类型的聚合函数

对key-value类型的rdd进行操作的函数,和常规聚合函数是类似的,只是多了key,在不同key之间进行聚合而已。

  • reduceByKey
  • foldByKey
  • aggregateByKey
from pyspark import SparkConf, SparkContext
import operator


def f(iterator):
    for x in iterator:
        print(x)


def f2(iterator):
    yield sum(iterator)


if __name__ == '__main__':
    conf = SparkConf().setAppName("mini").setMaster("local[*]")
    sc = SparkContext(conf=conf)
    sc.setLogLevel("WARN")

    rdd = sc.textFile("hdfs://node1:8020/pydata/word.txt")
    print(rdd.collect())
    # ['hello you Spark Flink', 'hello me hello she Spark']

    rdd_flatmap = rdd.flatMap(lambda x: x.split(" "))
    rdd_map = rdd_flatmap.map(lambda word: (word, 1))
    print(rdd_map.collect())

    # groupByKey
    groupbykey_rdd = rdd_map.groupByKey()
    rdd_result = groupbykey_rdd.mapValues(sum)
    print("use groupByKey")
    print(rdd_result.collect())
    # [('Spark', 2), ('Flink', 1), ('hello', 3), ('you', 1), ('me', 1), ('she', 1)]

    # reduceByKey 有预聚合,性能好于group_by_key_rdd
    print("use reduceByKey")
    print(rdd_map.reduceByKey(operator.add).collect())
    # [('Spark', 2), ('Flink', 1), ('hello', 3), ('you', 1), ('me', 1), ('she', 1)]

    # foldByKey
    print("use foldByKey")
    print(rdd_map.foldByKey(0, operator.add).collect())
    # [('Spark', 2), ('Flink', 1), ('hello', 3), ('you', 1), ('me', 1), ('she', 1)]

    # aggregateByKey
    print("use aggregateByKey")
    print(rdd_map.aggregateByKey(0, operator.add, operator.add).collect())
    # [('Spark', 2), ('Flink', 1), ('hello', 3), ('you', 1), ('me', 1), ('she', 1)]

  • combineByKey:是Key-value聚合函数的最抽象的写法。需要定义createCombiner(用于创建分区内元素)、mergeValue(分区内元素的操作)、mergeCombiners(分区间元素的操作)这三个函数。

简单的demo

from pyspark import SparkConf, SparkContext
import operator


def createCombiner(value):
    return [value]


def mergeValue(x, y):
    x.append(y)
    return x

def mergeCombiners(x, y):
    x.extend(y)
    return x


if __name__ == '__main__':
    conf = SparkConf().setAppName("mini").setMaster("local[*]")
    sc = SparkContext(conf=conf)
    sc.setLogLevel("WARN")

    # groupByKey
    rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)])
    # 使用combineByKey 模拟reduceByKey操作
    print(rdd.combineByKey(createCombiner, mergeValue, mergeCombiners).collect())

combineByKey实现求人分数平均值的做法:

from pyspark import SparkConf, SparkContext


def createCombiner(x):
    """
    分区内元素的创建
    :param x:
    :return:
    """
    return [x, 1]


def mergeValue(x, y):
    """
    分区内通元素的操作
    :param x:
    :param y:
    :return:
    """
    x.append(y)
    return [x[0]+y, x[1]+1]


def mergeCombiners(a, b):
    """
    分区之间的操作
    :param a:
    :param b:
    :return:
    """
    return [a[0]+b[0], a[1]+b[1]]


if __name__ == '__main__':
    conf = SparkConf().setAppName("mini").setMaster("local[*]")
    sc = SparkContext(conf=conf)

    x = sc.parallelize([("Fred", 88), ("Fred", 95), ("Fred", 91), ("Wilma", 93), ("Wilma", 95), ("Wilma", 98)])
    print(x.glom().collect())
    combine_rdd = x.combineByKey(createCombiner, mergeValue, mergeCombiners)
    print(combine_rdd.collect())

    print(combine_rdd.map(lambda x: (x[0], x[1][0]/x[1][1])).collect())


6.3 join相关操作

from pyspark import SparkConf, SparkContext


if __name__ == '__main__':
    conf = SparkConf().setAppName("mini").setMaster("local[*]")
    sc = SparkContext(conf=conf)
    sc.setLogLevel("WARN")

    x = sc.parallelize([(1001, "zhangsan"), (1002, "lisi"), (1003, "wangwu"), (1004, "zhangliu")])
    y = sc.parallelize([(1001, "sales"), (1002, "tech")])

    print(x.join(y).collect())
    # [(1001, ('zhangsan', 'sales')), (1002, ('lisi', 'tech'))]
    print(x.leftOuterJoin(y).collect())
    # [(1004, ('zhangliu', None)), (1001, ('zhangsan', 'sales')), (1002, ('lisi', 'tech')), (1003, ('wangwu', None))]
    print(x.rightOuterJoin(y).collect())
    # [(1001, ('zhangsan', 'sales')), (1002, ('lisi', 'tech'))]

7. 搜狗搜索词案例的实战

from pyspark import SparkConf, SparkContext
import re
import jieba
import operator


if __name__ == '__main__':
    conf = SparkConf().setAppName("sougou").setMaster("local[*]")
    sc = SparkContext(conf=conf)
    # TODO 1. 读取数据
    sougouFileRDD = sc.textFile("hdfs://node1:8020/bigdata/sougou/SogouQ.reduced")
    # 打印行数
    # print("sougou count is: ", sougouFileRDD.count())

    # 00:00:00	2982199073774412	[360安全卫士]	8 3	download.it.com.cn/softweb/software/firewall/antivirus/20067/17938.html
    resultRDD = sougouFileRDD\
    .filter(lambda line: (len(line.strip()) > 0) and (len(re.split("\s+", line.strip())) == 6))\
    .map(lambda line:(
        re.split("\s+", line)[0],
        re.split("\s+", line)[1],
        re.sub("\[|\]", "", re.split("\s+", line)[2]),
        re.split("\s+", line)[3],
        re.split("\s+", line)[4],
        re.split("\s+", line)[5],
    ))
    print(resultRDD.take(3))
    # [('00:00:00', '2982199073774412', '360安全卫士', '8', '3',
    #   'download.it.com.cn/softweb/software/firewall/antivirus/20067/17938.html'),
    #  ('00:00:00', '07594220010824798', '哄抢救灾物资', '1', '1', 'news.21cn.com/social/daqian/2008/05/29/4777194_1.shtml'), (
    #  '00:00:00', '5228056822071097', '75810部队', '14', '5',
    #  'www.greatoo.com/greatoo_cn/list.asp?link_id=276&title=%BE%DE%C2%D6%D0%C2%CE%C5')]

    # TODO 2. 搜狗关键词统计
    recordRDD = resultRDD.flatMap(lambda record: jieba.cut(record[2]))
    sougouResult1 = recordRDD\
        .map(lambda word: (word, 1))\
        .reduceByKey(operator.add)\
        .sortBy(lambda x: x[1], False)
    print(sougouResult1.take(3))
    # [('+', 1442), ('地震', 605), ('.', 575)]

    # TODO 3. 用户搜索点击统计
    sougouClick = resultRDD.map(lambda record: (record[1], record[2]))
    sougouResult2 = sougouClick.map(lambda record: (record, 1))\
        .reduceByKey(operator.add)
    print("max count is ", sougouResult2.map(lambda x: x[1]).max())
    # max count is  19
    print(sougouResult2.sortBy(lambda x: x[1], False).take(3))
    # [(('9026201537815861', 'scat'), 19), (('7650543509505572', '儿童孤独症的治疗'), 19), (('9882234129973235', 'xiao77'), 17)]

    # TODO 4. 搜索时间段统计
    hourRDD = resultRDD.map(lambda x: str(x[0])[:2])

    sougouResult3 = hourRDD.map(lambda x: (x, 1)).reduceByKey(operator.add).sortBy(lambda x: x[1], False)
    print(sougouResult3.collect())

    # TODO 5. 停止sparkcontext
    sc.stop()
  

8. RDD缓存和checkpoint

8.1 缓存 Cache

RDD的缓存是保存在CPU,内存或者磁盘,响应快,但是易丢失,rdd依赖关系不会被切断。不能持久化,一般把经常用的rdd缓存,需要action算子才能触发。系统定期使用LRU(least recently used)算法清理缓存

from pyspark import SparkConf, SparkContext, StorageLevel
import time


if __name__ == '__main__':
    conf = SparkConf().setAppName("mini").setMaster("local[*]")
    sc = SparkContext(conf=conf)
    sc.setLogLevel("WARN")

    x = sc.parallelize([(1001, "zhangsan"), (1002, "lisi"), (1003, "wangwu"), (1004,  "zhangliu")])
    y = sc.parallelize([(1001, "sales"), (1002, "tech")])

    print(x.join(y).collect())
    # [(1001, ('zhangsan', 'sales')), (1002, ('lisi', 'tech'))]
    print(x.leftOuterJoin(y).collect())
    # [(1004, ('zhangliu', None)), (1001, ('zhangsan', 'sales')), (1002, ('lisi', 'tech')), (1003, ('wangwu', None))]
    print(x.rightOuterJoin(y).collect())
    # [(1001, ('zhangsan', 'sales')), (1002, ('lisi', 'tech'))]

    result = x.join(y)
    # 缓存文件操作 相当于 调用self.persist(StorageLevel.MEMORY_ONLY)
    # result.cache()
    result.persist(StorageLevel.MEMORY_ONLY)
    # 需要action算子才能够被激活
    result.collect()
    result.unpersist()

    result.count()

    time.sleep(600)
    sc.stop()

8.3 spark通过cache和checkpoint进行容错

  1. 首先检测数据是否有缓存,cache或者persist?
  2. 然后检查hdfs是否有checkpoint
  3. 上诉两条都没有的话,就根据依赖关系重新构建。

8.4 cache和checkpoint演示

下面例子分别对cache和checkpoint读取rdd缓存。
请添加图片描述

9. 流量日志分析代码

from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession


def ip_transform(ip):
    ips = ip.split(".")  # [223,243,0,0] 32位二进制数
    ip_num = 0
    for i in ips:
        ip_num = int(i) | ip_num << 8
    return ip_num


def binary_search(ip_num, broadcast_value):
    # 16777472
    # [('16777472', '16778239', '119.306239', '26.075302'), ('16779264', '16781311', '113.280637', '23.125178')]

    start = 0
    end = len(broadcast_value) - 1
    while (start <= end):
        mid = (end + start) // 2
        middle = broadcast_value[mid]
        if int(middle[0]) <= ip_num <= int(middle[1]):
            return mid
        elif ip_num < int(middle[0]):
            end = mid

        else:
            start = mid


def main():
    # 1. 准备环境
    # spark = SparkSession.builder.appName("ipCheck").master("local[*]").getOrCreate()
    # sc = spark.sparkContext

    conf = SparkConf().setAppName("ipCheck").setMaster("local[*]")
    sc = SparkContext(conf=conf)

    # 2. 读取用户所在ip信息的文件,切分后选择下标为1字段就是用户的ip
    dest_ip_rdd = sc.textFile("hdfs://node1:8020/bigdata/ip/20190121000132394251.http.format")\
        .map(lambda x: x.split("|"))\
        .map(lambda x: x[1])
    print(dest_ip_rdd.take(2))

    # 3. 读取城市ip段信息,换区起始ip的long类型(下标2),结束ip的long类型(下标3),经度(下标13),维度(下标14)
    city_ip_rdd = sc.textFile("hdfs://node1:8020/bigdata/ip/ip.txt")\
        .map(lambda x: x.split("|"))\
        .map(lambda x: (x[2], x[3], x[13], x[14]))
    print(city_ip_rdd.take(2))

    # 广播一份数据到executor,而不是每一个task线程,这样可以减少网络IO传输
    city_ip_rdd_broadcast = sc.broadcast(city_ip_rdd.collect())

    def GetPos(x):
        city_ip_rdd_broadcast_value = city_ip_rdd_broadcast.value
        def getResult(ip):
            # 4 通过ip转化成long类型的ip
            ip_num = ip_transform(ip)
            # 5. 采用折半查找ip对应的经纬度
            index = binary_search(ip_num, city_ip_rdd_broadcast_value)
            return ((city_ip_rdd_broadcast_value[index][2], city_ip_rdd_broadcast_value[index][3]), 1)

        # 得到 ((经度,维度), 1)
        re = map(tuple, [getResult(ip) for ip in x])
        return re


    ip_rdd_map_partition = dest_ip_rdd.map(GetPos)
    result = ip_rdd_map_partition.reduceByKey(lambda x, y: x+y).sortBy(lambda x: x[1], False)
    print("final sorted result")
    print(result.take(5))
    # [(('108.948024', '34.263161'), 1824), (('116.405285', '39.904989'), 1535), (('106.504962', '29.533155'), 400), (('114.502461', '38.045474'), 383), (('106.57434', '29.60658'), 177)]

    sc.stop()


if __name__ == '__main__':
    main()

10. 累加器和广播变量

10.1 accumulator累加器

累加器适用于给不同的task来操作的变量,多个线程都能够修改这个变量。

from pyspark import SparkContext, SparkConf


if __name__ == '__main__':
    conf = SparkConf().setAppName("minpy").setMaster("local[*]")
    sc = SparkContext(conf=conf)

    l1 = [1, 2, 3, 4, 5]
    l1_textFile = sc.parallelize(l1)

    # 错误案例
    num = 10
    def add(x):
        global num
        num += x
    l1_textFile.foreach(add)
    print("value of num is", num)
    # 10 是有问题

    # 使用累加器解决
    # 定义累加器
    acc_num = sc.accumulator(10)
    def add_num(x):
        global acc_num
        acc_num.add(x)
    l1_textFile.foreach(add_num)
    # 25 使用累加器得到正确的结果
    print(acc_num)
    print(acc_num.value)

10.2 broadcast广播机制

广播机制主要是解决多个task中的网络传输问题。driver端的变量通过broadcast传输以后,到了executor,然后共享给task是只读形式的。

from pyspark import SparkContext, SparkConf


if __name__ == '__main__':
    conf = SparkConf().setAppName("broadcast").setMaster("local[*]")
    sc = SparkContext(conf=conf)
    # 定义rdd
    kvFruit = sc.parallelize([(1, "apple"), (2, "orange"), (3, "banana"), (4, "grape")])
    print(kvFruit.collect())
    fruit_collect_as_map = kvFruit.collectAsMap()
    print(fruit_collect_as_map)
    fruit_ids = sc.parallelize([2, 1, 4, 3])

    # 不使用广播变量的情况下,fruit_collect_as_map会被复制到每个task线程下面,如果fruit_collect_as_map很大,或者查询量大时候
    # 会出现很大的网络IO传输问题
    fruit_name_0 = fruit_ids.map(lambda index: fruit_collect_as_map[index])
    print("查询过后的水果名字")
    print(fruit_name_0.collect())

    # 使用广播变量, 节点中executor中的block manager会向driver请求一份副本,然后共享到每个task,减少大量IO传输
    # 1. 定义广播变量
    broadcast_map = sc.broadcast(fruit_collect_as_map)
    # 取广播变量
    fruit_name = fruit_ids.map(lambda index: broadcast_map.value[index])
    print("查询过后的水果名字")
    print(fruit_name.collect())

10.3 broadcast和accumulator练习

"""
1. 读取数据
2. 切割字符
3. 定义累加器,这里累加器可以计算非字母的个数
4. 定义广播变量 [# !]
5. 自定义函数累加非字母的表示
6. 执行统计
7 停止sparkcontext

"""
from pyspark import SparkConf, SparkContext
import re


if __name__ == '__main__':
    conf = SparkConf().setAppName("sougou").setMaster("local[*]")
    sc = SparkContext(conf=conf)

    rdd1 = sc.textFile("hdfs://node1:8020/bigdata/data.txt")

    """
    hadoop spark # hadoop spark
    hadoop spark hadoop spark ! hadoop sparkhadoop spark #
    hadoop spark hadoop spark hadoop spark %
    hadoop spark hadoop spark hadoop spark !
    ! hadoop spark hadoop spark hadoop spark
    """

    rdd2 = rdd1.filter(lambda line: (len(line) > 0)).flatMap(lambda line: re.split("\s+", line))
    print(rdd2.collect())
    acc_count = sc.accumulator(0)
    symbol_rdd = sc.parallelize(["#", "%", "!"])
    # broadcast的变量类型不能为rdd
    broadcast_symbol = sc.broadcast(symbol_rdd.collect())

    def add_num(x):
        global acc_count
        if x in broadcast_symbol.value:
            acc_count.add(1)
        return

    rdd2.foreach(add_num)
    print("total symbol: ", acc_count.value)
    # ['hadoop', 'spark', '#', 'hadoop', 'spark', 'hadoop', 'spark', 'hadoop', 'spark', '!', 'hadoop', 'sparkhadoop', 'spark', '#', 'hadoop', 'spark', 'hadoop', 'spark', 'hadoop', 'spark', '%', 'hadoop', 'spark', 'hadoop', 'spark', 'hadoop', 'spark', '!', '!', 'hadoop', 'spark', 'hadoop', 'spark', 'hadoop', 'spark']
    # total symbol:  6

    rdd3 = rdd1.filter(lambda line: (len(line) > 0)).flatMap(lambda line: re.split("\s+", line))\
            .filter(lambda s: s in broadcast_symbol.value).map(lambda s: (s, 1)).reduceByKey(lambda x, y: x+y)
    print(rdd3.collect())
    # [('#', 2), ('!', 3), ('%', 1)]

10.4 accumulator注意的问题

from pyspark import SparkContext, SparkConf


if __name__ == '__main__':
    conf = SparkConf().setAppName("acc").setMaster("local[*]")
    sc = SparkContext(conf=conf)
    # 定义
    acc_num = sc.accumulator(0)

    def add_num(x):
        if x % 2 == 0:
            acc_num.add(1)
            return 1
        else:
            return 0

    rdd1 = sc.parallelize([i for i in range(1, 11)])
    even_rdd = rdd1.filter(add_num)

    # 没有触发action算子之前,acc_num是0,
    print(acc_num.value)
    # 0
    print(even_rdd.collect())
    # 触发action算子后才开始计数
    print(acc_num.value)
    # 5
    # even_rdd算子没有缓存,所以再次触发action算子,会在原来的结果上面重新计数,结果变成10,导致结果异常
    print(even_rdd.collect())
    print(acc_num.value)
    # 10

    acc_num = sc.accumulator(0)
    even_rdd2 = rdd1.filter(add_num)
    # 对even_rdd2缓存
    even_rdd2.cache()
    even_rdd2.collect()
    even_rdd2.collect()
    # 缓存操作后,acc_num都为5
    print(acc_num.value)
    # 5

11. spark sql入门

创建一个环境并读取数据。

from pyspark.sql import SparkSession
from pyspark import SparkConf


if __name__ == '__main__':
    conf = SparkConf().setAppName("sparksession").setMaster("local[*]")
    spark = SparkSession.builder.config(conf=conf).getOrCreate()

    sc = spark.sparkContext
    fileDF = spark.read.text("/tmp/pycharm_project_553/PySpark-SparkSQL_2.3.0/data/data.txt")
    print("fileDF counts {}".format(fileDF.count()))
    fileDF.printSchema()
    fileDF.show(truncate=False)

    sc.stop()

11.1 方式一:RDD转Dataframe的第一种方式 createDataFrame

sparksql的初体验

from pyspark.sql import SparkSession, Row

if __name__ == '__main__':
    spark = SparkSession.builder.appName("test").getOrCreate()
    sc = spark.sparkContext

    lines = sc.textFile("../data/people.txt")
    """
    Michael, 29
    Andy, 30
    Justin, 19
    """
    parts = lines.map(lambda l: l.split(","))
    people = parts.map(lambda p: Row(name=p[0], age=int(p[1])))

    schemaPeople = spark.createDataFrame(people)
    schemaPeople.createOrReplaceTempView("people")

    teenagers = schemaPeople.filter(schemaPeople["age"] >= 13).filter(schemaPeople["age"] <= 19)

    teenNames = teenagers.rdd.map(lambda p: "Name: " + p.name).collect()
    for name in teenNames:
        print(name)
    # Name: Justin

    spark.stop()

11.2 方式二:通过StructedType构建DataFrame

"""
StructedType构建DataFrame
"""

from pyspark.sql import SparkSession, Row
from pyspark.sql.types import StringType, StructType, StructField

if __name__ == '__main__':
    spark = SparkSession.builder.appName("test").getOrCreate()
    sc = spark.sparkContext

    lines = sc.textFile("../data/people.txt")
    """
    Michael, 29
    Andy, 30
    Justin, 19
    """
    parts = lines.map(lambda l: l.split(","))
    people = parts.map(lambda p: (p[0], p[1].strip()))

    schemaString = "name age"
    fields = [StructField(field_name, StringType(), True) for field_name in schemaString.split()]
    schema = StructType(fields)

    schemaPeople = spark.createDataFrame(people, schema)
    schemaPeople.createOrReplaceTempView("people")
    results = spark.sql("select name from people")
    results.show()

    spark.stop()

11.3 方式三 直接toDF

"""
toDF构建DataFrame
"""

from pyspark.sql import SparkSession, Row
from pyspark.sql.types import StringType, StructType, StructField

if __name__ == '__main__':
    spark = SparkSession.builder.appName("test").getOrCreate()
    sc = spark.sparkContext

    l = [('Ankit', 25), ('Jalfaizy', 22), ('saurabh', 20), ('Bala', 26)]
    rdd = sc.parallelize(l)

    df = rdd.toDF(["name", "age"])
    df.show()
	spark.stop()

11.4 方式四 由pandas构建

"""
pandas构建DataFrame
"""

from pyspark.sql import SparkSession, Row
import pandas as pd
from datetime import datetime, date


if __name__ == '__main__':
    spark = SparkSession.builder.appName("test").getOrCreate()
    sc = spark.sparkContext

    pandas_df = pd.DataFrame({
        'a': [1, 2, 3],
        'b': [2., 3., 4.],
        'c': ['string1', 'string2', 'string3'],
        'd': [date(2000, 1, 1), date(2000, 2, 1), date(2000, 3, 1)],
        'e': [datetime(2000, 1, 1, 12, 0), datetime(2000, 1, 2, 12, 0), datetime(2000, 1, 3, 12, 0)]
    })

    df = spark.createDataFrame(pandas_df)
    df.show()
    df.printSchema()
    spark.stop()


11.5 外部数据转换成df


"""
{"name":"Michael"}
{"name":"Andy", "age":30}
{"name":"Justin", "age":19}
"""

# spark is an existing SparkSession
df = spark.read.json("file:///export/pyfolder1/pyspark-chapter03_3.8/data/people.json")
# Displays the content of the DataFrame to stdout
df.show()

11.6 sparksql实现wordcount

"""
explode
"""

from pyspark.sql import SparkSession
from pyspark.sql import functions


if __name__ == '__main__':

    spark = SparkSession.builder.appName("word").getOrCreate()
    sc = spark.sparkContext

    fileDF = spark.read.text("../data/word.txt")
    """
    hello you Spark Flink
    hello me hello she Spark
    """

    explodeDF = fileDF.withColumn("words", functions.explode(functions.split(functions.col("value"), ' ')))
    explodeDF.show()

    result1 = explodeDF.select("words").groupBy("words").count().orderBy("count", ascending=False)
    result2 = explodeDF.select("words").groupBy("words").count().sort("count", ascending=False)
    result2.show()
    
    """
    +-----+-----+
    |words|count|
    +-----+-----+
    |hello|    3|
    |Spark|    2|
    |   me|    1|
    |Flink|    1|
    |  you|    1|
    |  she|    1|
    +-----+-----+
    
    """


11.7 Iris data的实现

from pyspark.sql import SparkSession, Row
from pyspark import SparkConf
import pyspark.sql.functions as F


if __name__ == '__main__':
    conf = SparkConf().setAppName("iris").setMaster("local[*]")
    spark = SparkSession.builder.config(conf=conf).getOrCreate()
    sc = spark.sparkContext
    sc.setLogLevel("WARN")

    file_rdd = sc.textFile("file:///tmp/pycharm_project_553/PySpark-SparkSQL_2.3.0/data/iris/iris.data")
    new_rdd = file_rdd.filter((lambda line: len(line.strip()) > 0 and (lambda line: len(line.strip().split(",")) == 5)))
    print(f"count value is {new_rdd.count()}")

    iris_df = file_rdd.filter((lambda line: len(line.strip()) > 0 and (lambda line: len(line.strip().split(",")) == 5))) \
            .map(lambda line: line.strip().split(",")) \
            .map(lambda x: Row(sepal_length=x[0], sepal_width=x[1], petal_length=x[2], petal_width=x[3], irisclass=x[4])) \
            .toDF()

    iris_df.printSchema()
    iris_df.show(2)
    # +-----------+------------+-----------+------------+-----------+
    # | irisclass | petal_length | petal_width | sepal_length | sepal_width |
    # +-----------+------------+-----------+------------+-----------+
    # | Iris - setosa | 1.4 | 0.2 | 5.1 | 3.5 |
    # | Iris - setosa | 1.4 | 0.2 | 4.9 | 3.0 |
    # +-----------+------------+-----------+------------+-----------+

    iris_df.select("sepal_length").show(2)
    iris_df.select(iris_df.sepal_length).show(2)
    iris_df.select("sepal_length", "sepal_width").show(2)
    iris_df.groupby("irisclass").count().show()

    iris_df.groupby("irisclass").agg(F.count(F.col("irisclass")).alias("variable")).show()
    # +---------------+--------+
    # | irisclass | variable |
    # +---------------+--------+
    # | Iris - virginica | 50 |
    # | Iris - setosa | 50 |
    # | Iris - versicolor | 50 |
    # +---------------+--------+

    iris_df.createOrReplaceTempView("table_view")
    spark.sql("""
        select irisclass, count(1) as count
        from table_view
        group by irisclass
    """).show()
from pyspark.sql import SparkSession, Row
from pyspark import SparkConf
import pyspark.sql.functions as F


if __name__ == '__main__':
    conf = SparkConf().setAppName("iris").setMaster("local[*]")
    spark = SparkSession.builder.config(conf=conf).getOrCreate()
    sc = spark.sparkContext
    sc.setLogLevel("WARN")

    irisDF = spark.read.format("csv") \
        .option("sep", ",") \
        .option("header", "true") \
        .option("inferSchema", "true") \
        .load("file:///tmp/pycharm_project_553/PySpark-SparkSQL_2.3.0/data/iris/iris.csv")

    irisDF.show()
    irisDF.printSchema()

11.8 电影数据集案例

from pyspark import SparkConf
from pyspark.sql import SparkSession
import re
from pyspark.sql.types import StructType, StructField, StringType, IntegerType, FloatType


if __name__ == '__main__':
    conf = SparkConf().setAppName("movies").setMaster("local[*]")
    spark = SparkSession.builder.config(conf=conf).getOrCreate()
    sc = spark.sparkContext
    sc.setLogLevel("WARN")
    # 读取文件
    movies_rdd = sc.textFile("file:///tmp/pycharm_project_553/PySpark-SparkSQL_2.3.0/data/ml-100k/u.data")
    print("movies count is", movies_rdd.count())
    # 数据清洗
    # moviesDF = movies_rdd \
    #     .filter(lambda line: (len(line.strip()) > 0) and (len(re.split("\s+", line.strip())) == 4)) \
    #     .map(lambda line: re.split("\s+", line.strip())) \
    #     .map(lambda line: (int(line[0]), int(line[1]), int(line[2]), int(line[3]))) \
    #     .toDF(["userid", "itemid", "rating", "timestamp"])
    """
    root
     |-- userid: long (nullable = true)
     |-- itemid: long (nullable = true)
     |-- rating: long (nullable = true)
     |-- timestamp: long (nullable = true)
    """

    moviesData = movies_rdd \
        .filter(lambda line: (len(line.strip()) > 0) and (len(re.split("\s+", line.strip())) == 4)) \
        .map(lambda line: re.split("\s+", line.strip())) \
        .map(lambda line: (int(line[0]), int(line[1]), int(line[2]), int(line[3])))
    movies_schema = StructType([
        StructField('userid', StringType(), True),
        StructField('itemid', IntegerType(), False),
        StructField('rating', IntegerType(), False),
        StructField('timestamp', IntegerType(), False)
    ])
    moviesDF = spark.createDataFrame(moviesData, movies_schema)

    moviesDF.show(5)
    moviesDF.printSchema()

11.9 数据清洗一

from pyspark import SparkConf
from pyspark.sql import SparkSession
import re
from pyspark.sql.types import StructType, StructField, StringType, IntegerType, FloatType


if __name__ == '__main__':
    conf = SparkConf().setAppName("movies").setMaster("local[*]")
    spark = SparkSession.builder.config(conf=conf).getOrCreate()
    sc = spark.sparkContext
    sc.setLogLevel("WARN")

    df = spark.createDataFrame([
      (1, 144.5, 5.9, 33, 'M'),
      (2, 167.2, 5.4, 45, 'M'),
      (3, 124.1, 5.2, 23, 'F'),
      (4, 144.5, 5.9, 33, 'M'),
      (5, 133.2, 5.7, 54, 'F'),
      (3, 124.1, 5.2, 23, 'F'),
      (5, 129.2, 5.3, 42, 'M'),
    ], ['id', 'weight', 'height', 'age', 'gender'])

    # 删除重复的记录
    df1 = df.dropDuplicates()
    df1.show()

    # 删除除id字段重复的记录
    df2 = df1.dropDuplicates(subset=[c for c in df1.columns if c != 'id'])
    df2.show()
    """
    +---+------+------+---+------+
    | id|weight|height|age|gender|
    +---+------+------+---+------+
    |  5| 133.2|   5.7| 54|     F|
    |  1| 144.5|   5.9| 33|     M|
    |  2| 167.2|   5.4| 45|     M|
    |  3| 124.1|   5.2| 23|     F|
    |  5| 129.2|   5.3| 42|     M|
    +---+------+------+---+------+
    """

    # 查看某一列是否有重复
    import pyspark.sql.functions as F

    df3 = df2.agg(F.count("id").alias("id_Count"), F.countDistinct("id").alias("id_distinct_count"))
    df3.show()
    """
    +--------+-----------------+
    |id_Count|id_distinct_count|
    +--------+-----------------+
    |       5|                4|
    +--------+-----------------+
    """

    df4 = df2.withColumn("new_id", F.monotonically_increasing_id())
    df4.show()

11.10 数据清洗二

from pyspark import SparkConf
from pyspark.sql import SparkSession
import pyspark.sql.functions as F


if __name__ == '__main__':
    conf = SparkConf().setAppName("movies").setMaster("local[*]")
    spark = SparkSession.builder.config(conf=conf).getOrCreate()
    sc = spark.sparkContext
    sc.setLogLevel("WARN")

    df_miss = spark.createDataFrame([
        (1, 143.5, 5.6, 28,'M', 100000),
        (2, 167.2, 5.4, 45,'M', None),
        (3, None, 5.2, None, None, None),
        (4, 144.5, 5.9, 33, 'M', None),
        (5, 133.2, 5.7, 54, 'F', None),
        (6, 124.1, 5.2, None, 'F', None),
        (7, 129.2, 5.3, 42, 'M', 76000)],
         ['id', 'weight', 'height', 'age', 'gender', 'income'])

    # 统计每一行有多少缺失值
    df_miss_sum = df_miss.rdd.map(lambda row: (row['id'], sum([c == None for c in row])))
    # [(1, 0), (2, 1), (3, 4), (4, 1), (5, 1), (6, 2), (7, 0)]
    print(df_miss_sum.collect())

    df_miss.agg(F.count("id").alias("id_count"),
                F.count("income").alias("income_count"),
                F.count("*").alias("all")).show()
    """
    +--------+------------+---+
    |id_count|income_count|all|
    +--------+------------+---+
    |       7|           2|  7|
    +--------+------------+---+
    """
    # 统计每一列多少值没有缺失
    df_miss.agg(*[F.count(t).alias(t+"dismissing") for t in df_miss.columns if t!="income"]).show()
    """
    +------------+----------------+----------------+-------------+----------------+
    |iddismissing|weightdismissing|heightdismissing|agedismissing|genderdismissing|
    +------------+----------------+----------------+-------------+----------------+
    |           7|               6|               7|            5|               6|
    +------------+----------------+----------------+-------------+----------------+
    """

    # 统计缺失值的比例
    df_miss.agg(*[(1 - F.count(t)/F.count("*")).alias(t + "_rate_missing") for t in df_miss.columns]).show()
    """
    +---------------+-------------------+-------------------+------------------+-------------------+-------------------+
    |id_rate_missing|weight_rate_missing|height_rate_missing|  age_rate_missing|gender_rate_missing|income_rate_missing|
    +---------------+-------------------+-------------------+------------------+-------------------+-------------------+
    |            0.0| 0.1428571428571429|                0.0|0.2857142857142857| 0.1428571428571429| 0.7142857142857143|
    +---------------+-------------------+-------------------+------------------+-------------------+-------------------+
    """

    # 删除income列
    df_miss.select([c for c in df_miss.columns if c != "income"]).show()
    """
    +---+------+------+----+------+
    | id|weight|height| age|gender|
    +---+------+------+----+------+
    |  1| 143.5|   5.6|  28|     M|
    |  2| 167.2|   5.4|  45|     M|
    |  3|  null|   5.2|null|  null|
    |  4| 144.5|   5.9|  33|     M|
    |  5| 133.2|   5.7|  54|     F|
    |  6| 124.1|   5.2|null|     F|
    |  7| 129.2|   5.3|  42|     M|
    +---+------+------+----+------+
    """

    # 删除非空值少于 threshold的行
    #  drop rows that have less than `thresh` non-null values.
    df_miss.dropna(thresh=3).show()
    """
    +---+------+------+----+------+------+
    | id|weight|height| age|gender|income|
    +---+------+------+----+------+------+
    |  1| 143.5|   5.6|  28|     M|100000|
    |  2| 167.2|   5.4|  45|     M|  null|
    |  4| 144.5|   5.9|  33|     M|  null|
    |  5| 133.2|   5.7|  54|     F|  null|
    |  6| 124.1|   5.2|null|     F|  null|
    |  7| 129.2|   5.3|  42|     M| 76000|
    +---+------+------+----+------+------+
    """

    # 求解均值
    df_miss.agg(*[F.mean(i).alias(i) for i in df_miss.columns if i != "gender"]).show()
    """
    +---+------------------+-----------------+----+-------+
    | id|            weight|           height| age| income|
    +---+------------------+-----------------+----+-------+
    |4.0|140.28333333333333|5.471428571428571|40.4|88000.0|
    +---+------------------+-----------------+----+-------+
    """
    # 填充缺失值
    means = df_miss.agg(*[F.mean(i).alias(i) for i in df_miss.columns if i != "gender"]).toPandas().to_dict(orient="records")[0]
    means["gender"] = "missing"
    print(means)
    # {'id': 4.0, 'weight': 140.28333333333333, 'height': 5.471428571428571, 'age': 40.4, 'income': 88000.0, 'gender': 'missing'}
    df_miss.fillna(means).show()
    """
    +---+------------------+------+---+-------+------+
    | id|            weight|height|age| gender|income|
    +---+------------------+------+---+-------+------+
    |  1|             143.5|   5.6| 28|      M|100000|
    |  2|             167.2|   5.4| 45|      M| 88000|
    |  3|140.28333333333333|   5.2| 40|missing| 88000|
    |  4|             144.5|   5.9| 33|      M| 88000|
    |  5|             133.2|   5.7| 54|      F| 88000|
    |  6|             124.1|   5.2| 40|      F| 88000|
    |  7|             129.2|   5.3| 42|      M| 76000|
    +---+------------------+------+---+-------+------+
    """

11.11 电影评分项目一

from pyspark.sql import SparkSession
from pyspark import SparkConf, Row
import pyspark.sql.functions as F
import os


os.environ['SPARK_HOME'] = '/export/server/spark'
PYSPARK_PYTHON = "/root/anaconda3/envs/pyspark_env/bin/python"
# 当存在多个版本时,不指定很可能会导致出错
os.environ["PYSPARK_PYTHON"] = PYSPARK_PYTHON
os.environ["PYSPARK_DRIVER_PYTHON"] = PYSPARK_PYTHON


if __name__ == '__main__':

    conf = SparkConf().setAppName("movie").setMaster("local[*]")
    spark = SparkSession.builder.config(conf=conf).config("spark.sql.shuffle.partitions", "2").getOrCreate()
    sc = spark.sparkContext

    ratingRDD = sc.textFile("file:///tmp/pycharm_project_553/PySpark-SparkSQL_2.3.0/data/ml-1m/ratings.dat")
    ratingDF = ratingRDD \
        .filter(lambda line: len(line.strip()) > 0 and len(line.strip().split("::")) == 4) \
        .map(lambda line: line.strip().split("::")) \
        .map(lambda p: Row(userid=int(p[0]), movieId=int(p[1]), ratings=float(p[2]), timestep=int(p[3]))) \
        .toDF()
    ratingDF.show(2)

    # 获取top10电影,并且每个电影评分次大于200
    ratingDF.createOrReplaceTempView("table_view")

    # sql 操作
    # spark.sql("""
    #     select movieId, round(avg(ratings), 2) avg_ratings, count(movieId) cnt_movies
    #     from table_view
    #     group by movieId
    #     having cnt_movies>2000
    #     order by avg_ratings desc, cnt_movies desc
    #     limit 10
    # """).show()
    """
    +-------+-----------+----------+
    |movieId|avg_ratings|cnt_movies|
    +-------+-----------+----------+
    |    318|       4.55|      2227|
    |    858|       4.52|      2223|
    |    527|       4.51|      2304|
    |   1198|       4.48|      2514|
    |    260|       4.45|      2991|
    |   2762|       4.41|      2459|
    |    593|       4.35|      2578|
    |   2028|       4.34|      2653|
    |   2858|       4.32|      3428|
    |   2571|       4.32|      2590| 
    +-------+-----------+----------+
    """

    # dsl操作
    resultDF = ratingDF.select(["movieId", "ratings"]) \
        .groupby("movieId") \
        .agg(F.round(F.avg("ratings"), 2).alias("avg_ratings"), F.count("movieId").alias("cnt_movies")) \
        .filter("cnt_movies > 2000") \
        .orderBy(["avg_ratings", "cnt_movies"], ascending=[0, 0]) \
        .limit(10)
    resultDF.show()

    # 数据输出
    # csv
    # resultDF.coalesce(1).write.csv("file:///tmp/pycharm_project_553/PySpark-SparkSQL_2.3.0/data/ml-1m/output")
    # 写入到mysql
    resultDF \
        .coalesce(1) \
        .write \
        .format("jdbc") \
        .mode("overwrite") \
        .option("driver", "com.mysql.jdbc.Driver") \
        .option("url", "jdbc:mysql://node1:3306/?serverTimezone=UTC&characterEncoding=utf8&useUnicode=true") \
        .option("dbtable", "bigdata.tb_top10_movies") \
        .option("user", "root") \
        .option("password", "123456") \
        .save()

    sc.stop()

11.12 spark读写mysql

from pyspark.sql import SparkSession
from pyspark import SparkConf, Row
import pyspark.sql.functions as F
import os


os.environ['SPARK_HOME'] = '/export/server/spark'
PYSPARK_PYTHON = "/root/anaconda3/envs/pyspark_env/bin/python"
# 当存在多个版本时,不指定很可能会导致出错
os.environ["PYSPARK_PYTHON"] = PYSPARK_PYTHON
os.environ["PYSPARK_DRIVER_PYTHON"] = PYSPARK_PYTHON


if __name__ == '__main__':

    conf = SparkConf().setAppName("movie").setMaster("local[*]")
    spark = SparkSession.builder.config(conf=conf).config("spark.sql.shuffle.partitions", "2").getOrCreate()
    sc = spark.sparkContext
    # 读取文件
    jdbcDF = spark.read \
        .format("jdbc") \
        .option("url", "jdbc:mysql://node1:3306/?serverTimezone=UTC&characterEncoding=utf8&useUnicode=true") \
        .option("dbtable", "bigdata.tb_top10_movies") \
        .option("user", "root") \
        .option("password", "123456") \
        .load()
    jdbcDF.show()

    # 写入文件
    rdd = sc.parallelize([(9999, 5.5, 9999), (9999, 5.5, 9999)]).map(lambda line: Row(movieId=line[0], avg_ratings=line[1], cnt_movies=line[2]))
    df = rdd.toDF()
    df.show()

    df \
        .coalesce(1) \
        .write \
        .format("jdbc") \
        .mode("overwrite") \
        .option("driver", "com.mysql.jdbc.Driver") \
        .option("url", "jdbc:mysql://node1:3306/?serverTimezone=UTC&characterEncoding=utf8&useUnicode=true") \
        .option("dbtable", "bigdata.tb_top10_movies") \
        .option("user", "root") \
        .option("password", "123456") \
        .save()

11.13 Sparksql

import os
from pyspark.sql import SparkSession


# 这里可以选择本地PySpark环境执行Spark代码,也可以使用虚拟机中PySpark环境,通过os可以配置
os.environ['SPARK_HOME'] = '/export/server/spark-2.3.0-bin-hadoop2.7'
PYSPARK_PYTHON = "/root/anaconda3/envs/pyspark_env/bin/python"
# 当存在多个版本时,不指定很可能会导致出错
os.environ["PYSPARK_PYTHON"] = PYSPARK_PYTHON
os.environ["PYSPARK_DRIVER_PYTHON"] = PYSPARK_PYTHON


if __name__ == '__main__':
    spark = SparkSession\
        .builder\
        .appName("testHive")\
        .master("local[*]")\
        .enableHiveSupport()\
        .config("spark.sql.warehouse.dir", "hdfs://node1:8020/usr/hive/warehouse")\
        .config("hive.metastore.uris", "thrift://node1:9083")\
        .getOrCreate()

    spark.sql("show databases").show()
    spark.sql("use sparkhive").show()
    spark.sql("show tables").show()

    # spark.sql("create table if not exists person (id int, name string, age int) row format delimited fields terminated by ','")
    spark.sql("LOAD DATA INPATH '/bigdata/stu.txt' INTO TABLE person")
    spark.sql("select * from person ").show()
    """
    +---+-----+---+
    | id| name|age|
    +---+-----+---+
    |  1| Tony| 10|
    |  2|Janet| 12|
    |  3| Jack| 20|
    |  4|Sally| 24|
    +---+-----+---+
    """

    import pyspark.sql.functions as fn
    spark.read.table("person")\
        .groupBy("name")\
        .agg(fn.round(fn.avg("age"), 2).alias("avg_age"))\
        .show(10, truncate=False)

    spark.stop()

11.14 开窗函数

import os
from pyspark.sql import SparkSession


# 这里可以选择本地PySpark环境执行Spark代码,也可以使用虚拟机中PySpark环境,通过os可以配置
os.environ['SPARK_HOME'] = '/export/server/spark-2.3.0-bin-hadoop2.7'
PYSPARK_PYTHON = "/root/anaconda3/envs/pyspark_env/bin/python"
# 当存在多个版本时,不指定很可能会导致出错
os.environ["PYSPARK_PYTHON"] = PYSPARK_PYTHON
os.environ["PYSPARK_DRIVER_PYTHON"] = PYSPARK_PYTHON


if __name__ == '__main__':
    spark = SparkSession\
        .builder\
        .appName("testHive")\
        .master("local[*]")\
        .enableHiveSupport()\
        .config("spark.sql.warehouse.dir", "hdfs://node1:8020/usr/hive/warehouse")\
        .config("hive.metastore.uris", "thrift://node1:9083")\
        .getOrCreate()

    scoreDF = spark.sparkContext.parallelize([
        ("a1", 1, 80),
        ("a2", 1, 78),
        ("a3", 1, 95),
        ("a4", 2, 74),
        ("a5", 2, 92),
        ("a6", 3, 99),
        ("a7", 3, 99),
        ("a8", 3, 45),
        ("a9", 3, 55),
        ("a10", 3, 78),
        ("a11", 3, 100)]
    ).toDF(["name", "class", "score"])
    scoreDF.createOrReplaceTempView("scores")
    scoreDF.show()

    spark.sql("select count(name) from scores").show()
    spark.sql("select name, class, score, count(name) over() name_count from scores").show()
    """
    +----+-----+-----+----------+
    |name|class|score|name_count|
    +----+-----+-----+----------+
    |  a1|    1|   80|        11|
    |  a2|    1|   78|        11|
    |  a3|    1|   95|        11|
    |  a4|    2|   74|        11|
    |  a5|    2|   92|        11|
    |  a6|    3|   99|        11|
    |  a7|    3|   99|        11|
    |  a8|    3|   45|        11|
    |  a9|    3|   55|        11|
    | a10|    3|   78|        11|
    | a11|    3|  100|        11|
    +----+-----+-----+----------+
    """
    # 聚合开窗函数
    spark.sql("select name, class, score, count(name) over (partition by class) name_count from scores").show()
    """
    +----+-----+-----+----------+
    |name|class|score|name_count|
    +----+-----+-----+----------+
    |  a4|    2|   74|         2|
    |  a5|    2|   92|         2|
    |  a1|    1|   80|         3|
    |  a2|    1|   78|         3|
    |  a3|    1|   95|         3|
    |  a6|    3|   99|         6|
    |  a7|    3|   99|         6|
    |  a8|    3|   45|         6|
    |  a9|    3|   55|         6|
    | a10|    3|   78|         6|
    | a11|    3|  100|         6|
    +----+-----+-----+----------+
    """

    # ROW_NUMBER 顺序排序
    spark.sql("select name, class, score, row_number() over(order by score) rank from scores").show()
    """
    +----+-----+-----+----+
    |name|class|score|rank|
    +----+-----+-----+----+
    |  a8|    3|   45|   1|
    |  a9|    3|   55|   2|
    |  a4|    2|   74|   3|
    |  a2|    1|   78|   4|
    | a10|    3|   78|   5|
    |  a1|    1|   80|   6|
    |  a5|    2|   92|   7|
    |  a3|    1|   95|   8|
    |  a6|    3|   99|   9|
    |  a7|    3|   99|  10|
    | a11|    3|  100|  11|
    +----+-----+-----+----+
    """

    # row_number + partitionby分组进行排序
    spark.sql("select name, class, score, row_number() over(partition by class order by score) rank from scores").show()
    """
    +----+-----+-----+----+
    |name|class|score|rank|
    +----+-----+-----+----+
    |  a4|    2|   74|   1|
    |  a5|    2|   92|   2|
    |  a2|    1|   78|   1|
    |  a1|    1|   80|   2|
    |  a3|    1|   95|   3|
    |  a8|    3|   45|   1|
    |  a9|    3|   55|   2|
    | a10|    3|   78|   3|
    |  a6|    3|   99|   4|
    |  a7|    3|   99|   5|
    | a11|    3|  100|   6|
    +----+-----+-----+----+
    """

    # rank比row_number 更加智能,成绩一样支持并列
    spark.sql("select name, class, score, rank() over(partition by class order by score) rank from scores").show()
    """
    +----+-----+-----+----+
    |name|class|score|rank|
    +----+-----+-----+----+
    |  a4|    2|   74|   1|
    |  a5|    2|   92|   2|
    |  a2|    1|   78|   1|
    |  a1|    1|   80|   2|
    |  a3|    1|   95|   3|
    |  a8|    3|   45|   1|
    |  a9|    3|   55|   2|
    | a10|    3|   78|   3|
    |  a6|    3|   99|   4|
    |  a7|    3|   99|   4|
    | a11|    3|  100|   6|
    +----+-----+-----+----+
    """

    # dense_rank 依然是升序来排列,但是和rank的区别在于没有并列的概念,两个第一名,然后接下来的是第二名, 这里加上desc就变成降序了
    spark.sql("select name, class, score, dense_rank() over(partition by class order by score desc) rank from scores").show()
    """
    +----+-----+-----+----+
    |name|class|score|rank|
    +----+-----+-----+----+
    |  a5|    2|   92|   1|
    |  a4|    2|   74|   2|
    |  a3|    1|   95|   1|
    |  a1|    1|   80|   2|
    |  a2|    1|   78|   3|
    | a11|    3|  100|   1|
    |  a6|    3|   99|   2|
    |  a7|    3|   99|   2|
    | a10|    3|   78|   3|
    |  a9|    3|   55|   4|
    |  a8|    3|   45|   5|
    +----+-----+-----+----+
    """

    # ntile 排名后进行分组,下面是排名后,分成3个组,1-3
    spark.sql("select name, class, score, ntile(3) over(order by score) rank from scores").show()
    """
    +----+-----+-----+----+
    |name|class|score|rank|
    +----+-----+-----+----+
    |  a8|    3|   45|   1|
    |  a9|    3|   55|   1|
    |  a4|    2|   74|   1|
    |  a2|    1|   78|   1|
    | a10|    3|   78|   2|
    |  a1|    1|   80|   2|
    |  a5|    2|   92|   2|
    |  a3|    1|   95|   2|
    |  a6|    3|   99|   3|
    |  a7|    3|   99|   3|
    | a11|    3|  100|   3|
    +----+-----+-----+----+
    """

    spark.stop()

11. 15 UDF(User defined aggregation function)

import os
import pandas as pd
from pyspark.sql import SparkSession
from pyspark.sql.functions import udf
from pyspark.sql.types import IntegerType, FloatType


# 这里可以选择本地PySpark环境执行Spark代码,也可以使用虚拟机中PySpark环境,通过os可以配置
os.environ['SPARK_HOME'] = '/export/server/spark-2.3.0-bin-hadoop2.7'
PYSPARK_PYTHON = "/root/anaconda3/envs/pyspark_env/bin/python"
# 当存在多个版本时,不指定很可能会导致出错
os.environ["PYSPARK_PYTHON"] = PYSPARK_PYTHON
os.environ["PYSPARK_DRIVER_PYTHON"] = PYSPARK_PYTHON


if __name__ == '__main__':
    spark = SparkSession\
        .builder\
        .appName("testHive")\
        .master("local[*]")\
        .enableHiveSupport()\
        .config("spark.sql.warehouse.dir", "hdfs://node1:8020/usr/hive/warehouse")\
        .config("hive.metastore.uris", "thrift://node1:9083")\
        .getOrCreate()

    spark.conf.set("spark.sql.execution.arrow.enabled", "true")
    df_pd = pd.DataFrame(
        data={'integers': [1, 2, 3],
              'floats': [-1.0, 0.6, 2.6],
              'integer_arrays': [[1, 2], [3, 4.6], [5, 6, 8, 9]]}
    )
    df = spark.createDataFrame(df_pd)
    df.printSchema()
    df.show()


    def square(x):
        return x**2

    # udf的demo制定了返回为integer类型,实际返回了float类型会置为空
    square_udf_int = udf(lambda z: square(z), IntegerType())
    df.select('integers', 'floats', square_udf_int('integers').alias('int_squared'),
              square_udf_int('floats').alias('float_squared')).show()
    """
    +--------+------+-----------+-------------+
    |integers|floats|int_squared|float_squared|
    +--------+------+-----------+-------------+
    |       1|  -1.0|          1|         null|
    |       2|   0.6|          4|         null|
    |       3|   2.6|          9|         null|
    +--------+------+-----------+-------------+
    """

    # 同样的指定了float返回得到integer也会变成null
    square_udf_float = udf(lambda z:square(z), FloatType())
    df.select('integers', 'floats', square_udf_float('integers').alias('int_squared'),
              square_udf_float('floats').alias('float_squared')).show()
    """
    +--------+------+-----------+-------------+
    |integers|floats|int_squared|float_squared|
    +--------+------+-----------+-------------+
    |       1|  -1.0|       null|          1.0|
    |       2|   0.6|       null|         0.36|
    |       3|   2.6|       null|         6.76|
    +--------+------+-----------+-------------+
    """
    spark.stop()

11.15 使用装饰器来定义udf

import os
import pandas as pd
from pyspark.sql import SparkSession
from pyspark.sql.functions import udf
from pyspark.sql.types import IntegerType, FloatType


# 这里可以选择本地PySpark环境执行Spark代码,也可以使用虚拟机中PySpark环境,通过os可以配置
os.environ['SPARK_HOME'] = '/export/server/spark-2.3.0-bin-hadoop2.7'
PYSPARK_PYTHON = "/root/anaconda3/envs/pyspark_env/bin/python"
# 当存在多个版本时,不指定很可能会导致出错
os.environ["PYSPARK_PYTHON"] = PYSPARK_PYTHON
os.environ["PYSPARK_DRIVER_PYTHON"] = PYSPARK_PYTHON


if __name__ == '__main__':
    spark = SparkSession\
        .builder\
        .appName("testHive")\
        .master("local[*]")\
        .enableHiveSupport()\
        .config("spark.sql.warehouse.dir", "hdfs://node1:8020/usr/hive/warehouse")\
        .config("hive.metastore.uris", "thrift://node1:9083")\
        .getOrCreate()

    spark.conf.set("spark.sql.execution.arrow.enabled", "true")
    df_pd = pd.DataFrame(
        data={'integers': [1, 2, 3],
              'floats': [-1.0, 0.6, 2.6],
              'integer_arrays': [[1, 2], [3, 4.6], [5, 6, 8, 9]]}
    )
    df = spark.createDataFrame(df_pd)
    df.printSchema()
    df.show()

    # 使用装饰器来定义
    @udf(returnType=IntegerType())
    def square(x):
        return x**2


    df.select('integers', square('integers').alias('int_squared')).show()
    """
    +--------+-----------+
    |integers|int_squared|
    +--------+-----------+
    |       1|          1|
    |       2|          4|
    |       3|          9|
    +--------+-----------+
    """
    spark.stop()

11.16 混合类型的输出

import os
import pandas as pd
from pyspark.sql import SparkSession
import string
from pyspark.sql.functions import udf
from pyspark.sql.types import IntegerType, FloatType, ArrayType, StructType, StructField, StringType

# 这里可以选择本地PySpark环境执行Spark代码,也可以使用虚拟机中PySpark环境,通过os可以配置
os.environ['SPARK_HOME'] = '/export/server/spark-2.3.0-bin-hadoop2.7'
PYSPARK_PYTHON = "/root/anaconda3/envs/pyspark_env/bin/python"
# 当存在多个版本时,不指定很可能会导致出错
os.environ["PYSPARK_PYTHON"] = PYSPARK_PYTHON
os.environ["PYSPARK_DRIVER_PYTHON"] = PYSPARK_PYTHON


if __name__ == '__main__':
    spark = SparkSession\
        .builder\
        .appName("testHive")\
        .master("local[*]")\
        .enableHiveSupport()\
        .config("spark.sql.warehouse.dir", "hdfs://node1:8020/usr/hive/warehouse")\
        .config("hive.metastore.uris", "thrift://node1:9083")\
        .getOrCreate()

    spark.conf.set("spark.sql.execution.arrow.enabled", "true")
    df_pd = pd.DataFrame(
        data={'integers': [1, 2, 3],
              'floats': [-1.0, 0.6, 2.6],
              'integer_arrays': [[1, 2], [3, 4.6], [5, 6, 8, 9]]}
    )
    df = spark.createDataFrame(df_pd)

    def convert_ascii(number):
        return [number, string.ascii_letters[number]]

    array_schema = StructType([
        StructField('number', IntegerType(), nullable=False),
        StructField('letters', StringType(), nullable=False)
    ])

    spark_convert_ascii = udf(lambda z: convert_ascii(z), array_schema)

    df_ascii = df.select('integers', spark_convert_ascii('integers').alias('ascii_map'))
    df_ascii.show()

    spark.stop()

11.17 udf实战

import os
import pandas as pd
from pyspark.sql import SparkSession
import string
from pyspark.sql.functions import udf
from pyspark.sql.types import IntegerType, FloatType, ArrayType, StructType, StructField, StringType

# 这里可以选择本地PySpark环境执行Spark代码,也可以使用虚拟机中PySpark环境,通过os可以配置
os.environ['SPARK_HOME'] = '/export/server/spark-2.3.0-bin-hadoop2.7'
PYSPARK_PYTHON = "/root/anaconda3/envs/pyspark_env/bin/python"
# 当存在多个版本时,不指定很可能会导致出错
os.environ["PYSPARK_PYTHON"] = PYSPARK_PYTHON
os.environ["PYSPARK_DRIVER_PYTHON"] = PYSPARK_PYTHON


if __name__ == '__main__':
    spark = SparkSession\
        .builder\
        .appName("testHive")\
        .master("local[*]")\
        .enableHiveSupport()\
        .config("spark.sql.warehouse.dir", "hdfs://node1:8020/usr/hive/warehouse")\
        .config("hive.metastore.uris", "thrift://node1:9083")\
        .getOrCreate()

    spark.conf.set("spark.sql.execution.arrow.enabled", "true")

    @udf(returnType=IntegerType())
    def slen(s):
        return len(s)

    @udf(returnType=StringType())
    def to_upper(s):
        return s.upper()

    @udf(returnType=IntegerType())
    def add_one(x):
        return x+1

    df = spark.createDataFrame([(1, "John Doe", 21)], ("id", "name", "age"))

    # 普通的实现方法
    result = df.select(slen("name"), to_upper("name"), add_one("age"))
    result.show()
    """
    +----------+--------------+------------+
    |slen(name)|to_upper(name)|add_one(age)|
    +----------+--------------+------------+
    |         8|      JOHN DOE|          22|
    +----------+--------------+------------+
    """

    # sql实现
    spark.udf.register("slen", slen)
    spark.udf.register("to_upper", to_upper)
    spark.udf.register("add_one", add_one)
    df.createOrReplaceTempView("table")
    spark.sql("select slen(name) as slen2, to_upper(name), add_one(age) from table").show()
    """
    +-----+--------------+------------+
    |slen2|to_upper(name)|add_one(age)|
    +-----+--------------+------------+
    |    8|      JOHN DOE|          22|
    +-----+--------------+------------+
    """
    spark.stop()

11.8 pandasUDF

# -*- coding: utf-8 -*-
# Program function:
import os
import pandas as pd
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, pandas_udf
from pyspark.sql.types import LongType
# Import data types

os.environ['SPARK_HOME'] = '/export/servers/spark'
PYSPARK_PYTHON = "/root/anaconda3/envs/pyspark_env/bin/python"
# 当存在多个版本时,不指定很可能会导致出错
os.environ["PYSPARK_PYTHON"] = PYSPARK_PYTHON
os.environ["PYSPARK_DRIVER_PYTHON"] = PYSPARK_PYTHON
if __name__ == '__main__':
    spark = SparkSession.builder \
        .appName('test') \
        .getOrCreate()
    sc = spark.sparkContext

    # 方式1:普通方式创建pandas_func
    def multiply_func(a: pd.Series, b: pd.Series) -> pd.Series:
        return a * b
    multiply = pandas_udf(multiply_func, returnType=LongType())

    # The function for a pandas_udf should be able to execute with local Pandas data
    x = pd.Series([1, 2, 3])
    print(multiply_func(x, x))
    # 0    1
    # 1    4
    # 2    9
    # dtype: int64
    # Create a Spark DataFrame, 'spark' is an existing SparkSession
    df = spark.createDataFrame(pd.DataFrame(x, columns=["x"]))
    # Execute function as a Spark vectorized UDF
    df.select(multiply(col("x"), col("x"))).show()
    # +-------------------+
    # |multiply_func(x, x)|
    # +-------------------+
    # |                  1|
    # |                  4|
    # |                  9|
    # +-------------------+
    print("=" * 100)
    # 方式2:装饰器方法
    @pandas_udf(LongType())
    def multiply_func1(a: pd.Series, b: pd.Series) -> pd.Series:
        return a * b
    df.select(multiply_func1(col("x"), col("x")))\
        .withColumnRenamed("multiply_func1(x, x)","xxx").show()

    spark.stop()


http://www.kler.cn/a/4620.html

相关文章:

  • Grails应用http.server.requests指标数据采集问题排查及解决
  • ANSYS Fluent学习笔记(七)求解器四部分
  • day08_Kafka
  • 论文笔记(六十一)Implicit Behavioral Cloning
  • 【HM-React】08. Layout模块
  • 金融项目实战 04|JMeter实现自动化脚本接口测试及持续集成
  • ccc-pytorch-LSTM(8)
  • 操作系统经典同步问题——读者-写者问题和哲学家进餐问题
  • 【Nginx三】——Nginx实现反向代理
  • Redis高频40问
  • 【Spring Cloud Alibaba】11.链路追踪(SkyWalking)
  • shiro
  • 【03173】2020年10月高等教育自学考试-软件开发工具
  • odoo owl 边学边练 动态控制子组件
  • 基于AI分词模型,构建一个简陋的Web应用
  • 【从零开始学习 UVM】3.5、UVM TestBench架构 —— UVM Sequencer [uvm_sequencer]
  • 关于三角面正反和剔除cull
  • 全局事件总线
  • 区块链系统:签名
  • 带你弄明白c++的4种类型转换
  • 电商一站式管理后台必备工具:电商API接口,网络爬虫、数据抓取、批量处理订单
  • C++中常见的容器类使用方法举例(vector、deque、map、set)
  • 根据时间戳获取总用时(天时分秒)
  • VectorDraw Developer Framework 10.1003.1 Crack
  • 海心沙元宇宙音乐会虚拟主持人玩法再升级,虚拟动力技术全程助力
  • [powered with AI] 2023.3.24 考研英语学习 2014 英语二翻译