当前位置: 首页 > article >正文

机器学习-核函数(Kernel Function)

核函数(Kernel Function)是一种数学函数,主要用于将数据映射到一个更高维的特征空间,以便于在这个新特征空间中更容易找到数据的结构或模式。核函数的主要作用是在不需要显式计算高维特征空间的情况下,通过内积操作来实现高维映射,从而简化计算。

核函数的作用

  1. 处理非线性问题:很多机器学习算法(如支持向量机)在原始特征空间中仅能处理线性可分数据。通过核函数,可以将数据映射到更高的特征空间,使得即使在原始空间中非线性可分的数据,也可以在线性可分的高维空间中找到分离超平面。

  2. 提高模型的灵活性:通过选择不同的核函数,模型可以适应不同类型的数据分布,从而优化分类、回归等任务的性能。

  3. 避免维度灾难:直接进行高维计算可能会带来计算复杂度高和数据稀疏的问题。核函数通过计算内积的方式在更低的维度上完成挑战,从而减轻了这一问题。

常用的核函数

  1. 线性核:  K(x_i,x_j)=x_i^Tx_j    于线性可分数据。
  2. 多项式核:  K(x_i,x_j)=(x_i^Tx_j+c)^d  其中 c是常数,d是多项式的度数。
  3. 高斯(RBF)核高斯核非常常用,能够处理许多非线性问题。
  4. Sigmoid核:                                                                                                                              

适用于神经网络的某些模型。

这些核函数在选择和应用时可以根据具体问题的需要而定。不同的核函数对模型的表现可以产生显著影响,因此在实践中往往需要进行选择和调优。

例子:使用高斯 (RBF) 核的支持向量机

import numpy as np  
import matplotlib.pyplot as plt  
from sklearn import datasets  
from sklearn.model_selection import train_test_split  
from sklearn.svm import SVC  
from sklearn.metrics import classification_report, confusion_matrix  

# 生成一个分类数据集  
X, y = datasets.make_moons(n_samples=100, noise=0.1, random_state=42)  

# 分割数据集为训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)  

# 创建高斯核支持向量机模型  
svm_rbf = SVC(kernel='rbf', gamma='scale')  

# 训练模型  
svm_rbf.fit(X_train, y_train)  

# 对测试集进行预测  
y_pred = svm_rbf.predict(X_test)  

# 输出分类报告  
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))  
print("\nClassification Report:\n", classification_report(y_test, y_pred))  

# 可视化结果  
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_pred, cmap='coolwarm', s=50, edgecolor='k')  
plt.title('SVM with RBF Kernel')  
plt.xlabel('Feature 1')  
plt.ylabel('Feature 2')  
plt.show()

示例 2: 使用线性核的支持向量机

# 生成一个线性可分的数据集  
X_linear, y_linear = datasets.make_blobs(n_samples=100, centers=2, random_state=6)  

# 分割数据集为训练集和测试集  
X_train_linear, X_test_linear, y_train_linear, y_test_linear = train_test_split(X_linear, y_linear, test_size=0.3, random_state=42)  

# 创建线性核支持向量机模型  
svm_linear = SVC(kernel='linear')  

# 训练模型  
svm_linear.fit(X_train_linear, y_train_linear)  

# 对测试集进行预测  
y_pred_linear = svm_linear.predict(X_test_linear)  

# 输出分类报告  
print("\nConfusion Matrix (Linear SVM):\n", confusion_matrix(y_test_linear, y_pred_linear))  
print("\nClassification Report (Linear SVM):\n", classification_report(y_test_linear, y_pred_linear))  

# 可视化结果  
plt.scatter(X_test_linear[:, 0], X_test_linear[:, 1], c=y_pred_linear, cmap='coolwarm', s=50, edgecolor='k')  
plt.title('SVM with Linear Kernel')  
plt.xlabel('Feature 1')  
plt.ylabel('Feature 2')  
plt.show()


http://www.kler.cn/a/513169.html

相关文章:

  • 1.2.神经网络基础
  • 【面试题】JVM部分[2025/1/13 ~ 2025/1/19]
  • 淘宝关键词页面爬取绘图进行数据分析
  • 开源许可证(Open Source Licenses)
  • 【Leetcode 热题 100】45. 跳跃游戏 II
  • 和优秀的人一起共事,你会越来越优秀!
  • 使用xorriso v1.5.2和grub4dos 0.4.6a -2024-02-26制作可启动ISO文件
  • 《Keras 3 使用 Reptile 进行 Few-Shot 学习》
  • SSL证书的颁发格式和制作过
  • 第四天 安装DevEco Studio,配置HarmonyOS开发环境
  • 【集合】单列集合和双列集合
  • OpenCV简介、OpenCV安装
  • 25届自动化考研复试微机原理基础版题库
  • Y3编辑器2.0功能指引
  • js手写-实现Promise的实例方法
  • 深度学习中梯度的补充理解
  • 《探秘鸿蒙Next:如何保障AI模型轻量化后多设备协同功能一致》
  • Jira中bug的流转流程
  • mybatis plus 中 使用 updateById或updateBatchById 更新字段为null 不更新问题
  • 虚幻基础-1:cpu挑选(14600kf)
  • 【FPGA】MIPS 12条整数指令【1】
  • html,css,js的粒子效果
  • 【Elasticsearch】Elasticsearch文档操作
  • IoTDB 1.2 升级 1.3 后 Pipe 插件失效
  • vif-方差膨胀因子计算
  • macOS如何进入 Application Support 目录(cd: string not in pwd: Application)