当前位置: 首页 > article >正文

【ARM 嵌入式 C 入门及渐进 10 -- 冒泡排序 选择排序 插入排序 快速排序 归并排序 堆排序 比较介绍】

文章目录

    • 排序算法小结
    • 排序算法C实现

在这里插入图片描述

排序算法小结

C语言中常用的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序。下面我们来一一介绍:

  • 冒泡排序(Bubble Sort):冒泡排序是通过比较相邻元素的大小进行排序。如果当前元素比下一个元素大,就交换它们两个的位置。重复这个过程直到最后,最大的元素就会“冒”到数组的最后。然后再从头开始重复这个过程,但是最后一个元素不再考虑。这个过程会一直进行,直到没有元素需要交换,也就是整个数组已经排序完成。冒泡排序的时间复杂度是O(n^2)
  • 选择排序(Selection Sort):选择排序是每次从未排序的元素中选择最小(或最大)的元素放到未排序元素的开始位置,直到所有元素都已排序。选择排序的时间复杂度也是O(n^2)
  • 插入排序(Insertion Sort):插入排序的思路是将未排序的元素依次插入到已排序元素的适当位置。开始时,第一个元素被认为已排序,然后将第二个元素和它比较,决定第二个元素在已排序元素中的位置,然后再将第三个元素和已排序的元素比较,依次进行。插入排序的时间复杂度是O(n^2)
  • 快速排序(Quick Sort):快速排序是一种使用分治策略的排序算法。它的基本思想是选择一个基准元素,将数组分为两部分,一部分的元素都比基准元素小,另一部分的元素都比基准元素大。然后对这两部分再分别进行快速排序。快速排序最坏的时间复杂度是O(n^2),但是在平均情况下,快速排序的时间复杂度是O(n log n)
  • 归并排序(Merge Sort):归并排序也是一种使用分治策略的排序算法。它的基本思想是将数组分为两半,分别对它们进行归并排序,然后将两个已排序的子数组合并成一个完整的已排序数组。归并排序的时间复杂度是O(n log n)
  • 堆排序(Heap Sort):堆排序是基于二叉堆的一种排序方法。首先将数组构建成一个最大堆或最小堆,然后依次移除堆顶的元素,并调整堆以保持堆的性质,直到堆为空,此时数组已排序。堆排序的时间复杂度是O(n log n)

总的来说,这些排序算法各有各的优点和适用场景,例如,冒泡排序、选择排序和插入排序适用于小规模数据或者部分有序数据,而快速排序、归并排序和堆排序通常适用于大规模数据排序。

排序算法C实现

#include <stdio.h>

//冒泡排序:
void bubbleSort(int arr[], int n)
{
    int i, j;

    for (i = 0; i < n-1; i++) {
        for (j = 0; j < n-i-1; j++) {
            if (arr[j] > arr[j+1]) {
                int temp = arr[j];
                arr[j] = arr[j+1];
                arr[j+1] = temp;
            }
        }
    }
}
//选择排序:
void selectionSort(int arr[], int n)
{
    int i, j, minIndex, temp;

    for (i = 0; i < n-1; i++) {
        minIndex = i;

        for (j = i+1; j < n; j++) if (arr[j] < arr[minIndex]) {
                minIndex = j;
            }

        temp = arr[minIndex];
        arr[minIndex] = arr[i];
        arr[i] = temp;
    }
}
//插入排序:
void insertionSort(int arr[], int n)
{
    int i, key, j;

    for (i = 1; i < n; i++) {
        key = arr[i];
        j = i - 1;

        while (j >= 0 && arr[j] > key) {
            arr[j + 1] = arr[j];
            j = j - 1;
        }

        arr[j + 1] = key;
    }
}
//快速排序:
int partition(int arr[], int low, int high)
{
    int pivot = arr[high];
    int i = (low - 1);

    for (int j = low; j <= high- 1; j++) {
        if (arr[j] <= pivot) {
            i++;
            swap(&arr[i], &arr[j]);
        }
    }

    swap(&arr[i + 1], &arr[high]);
    return (i + 1);
}
void quickSort(int arr[], int low, int high)
{
    if (low < high) {
        int pi = partition(arr, low, high);
        quickSort(arr, low, pi - 1);
        quickSort(arr, pi + 1, high);
    }
}
//归并排序:
void merge(int arr[], int l, int m, int r)
{
    int i, j, k;
    int n1 = m - l + 1;
    int n2 = r - m;
    int L[n1], R[n2];

    for (i = 0; i < n1; i++) {
        L[i] = arr[l + i];
    }

    for (j = 0; j < n2; j++) {
        R[j] = arr[m + 1+ j];
    }

    i = 0;
    j = 0;
    k = l;

    while (i < n1 && j < n2) {
        if (L[i] <= R[j]) {
            arr[k] = L[i];
            i++;
        } else {
            arr[k] = R[j];
            j++;
        }

        k++;
    }

    while (i < n1) {
        arr[k] = L[i];
        i++;
        k++;
    }

    while (j < n2) {
        arr[k] = R[j];
        j++;
        k++;
    }
}
void mergeSort(int arr[], int l, int r)
{
    if (l < r) {
        int m = l+(r-l)/2;
        mergeSort(arr, l, m);
        mergeSort(arr, m+1, r);
        merge(arr, l, m, r);
    }
}
//堆排序:
void heapify(int arr[], int n, int i)
{
    int largest = i;
    int l = 2*i + 1;
    int r = 2*i + 2;

    if (l < n && arr[l] > arr[largest]) {
        largest = l;
    }

    if (r < n && arr[r] > arr[largest]) {
        largest = r;
    }

    if (largest != i) {
        swap(&arr[i], &arr[largest]);
        heapify(arr, n, largest);
    }
}
void heapSort(int arr[], int n)
{
    for (int i = n / 2 - 1; i >= 0; i--) {
        heapify(arr, n, i);
    }

    for (int i=n-1; i>=0; i--) {
        swap(&arr[0], &arr[i]);
        heapify(arr, i, 0);
    }
}

http://www.kler.cn/a/106708.html

相关文章:

  • Web前端开发技术之HTMLCSS知识点总结
  • 大语言模型的语境中“越狱”和思维链
  • 华为AI培训-NLP实验
  • tui-editor报错
  • 二叉搜索树(TreeMapTreeSet)
  • ASP .NET Core 学习(.NET9)配置接口访问路由
  • Mysql,SqlServer,Oracle获取库名 表名 列名
  • 配置VUE环境过程中 npm报错的处理方案以及VUE环境搭建过程
  • 线扫相机DALSA--采集卡Base模式设置
  • 工控安全与网络安全有什么不同?
  • 在Win11上部署ChatGLM2-6B详细步骤--(上)准备工作
  • 算法通关村第三关-白银挑战双指针思想
  • 操作系统缓冲区管理(单缓冲,双缓冲,循环缓冲,缓冲池)
  • SpringMVC(四)域对象共享数据
  • Django 全局配置 settings 详解
  • 730. 机器人跳跃问题--二分
  • 【报错】java.sql.SQLException: Invalid utf8mb3 character string: ‘ACED00‘
  • Fourier分析导论——第1章——Fourier分析的起源(E.M. Stein R. Shakarchi)
  • vue 使用openlayers导出渲染的地图
  • 在ffmpeg中,网络视频流h264为什么默认的转为YUV而不是其他格式
  • 工业4.0的安全挑战与解决方案
  • IDEA配置HTML和Thymeleaf热部署开发
  • yo!这里是进程间通信
  • Redis 的优势
  • mysql冷拷贝大表
  • (PyTorch)PyTorch中的常见运算(*、@、Mul、Matmul)