一个完整的手工构建的cuda动态链接库工程 03记
1, 源代码
仅仅是加入了模板函数和对应的 .cuh文件,当前的目录结构如下:
icmm/gpu/add.cu
#include <stdio.h>
#include <cuda_runtime.h>
#include "inc/add.cuh"
// different name in this level for different typename, as extern "C" can not decorate template function that is in C++;
extern "C" void vector_add_gpu_s(float *A, float *B, float *C, int n)
{
dim3 grid, block;
block.x = 256;
grid.x = (n + block.x - 1) / block.x;
printf("CUDA kernel launch with %d blocks of %d threads\n", grid.x, block.x);
vector_add_kernel<><<<grid, block>>>(A, B, C, n);
}
extern "C" void vector_add_gpu_d(double* A, double* B, double* C, int n)
{
dim3 grid, block;
block.x = 256;
grid.x = (n + block.x - 1) / block.x;
printf("CUDA kernel launch with %d blocks of %d threads\n", grid.x, block.x);
vector_add_kernel<><<<grid, block>>>(A, B, C, n);
}
icmm/gpu/add.h
#pragma once
extern "C" void vector_add_gpu_s(float *A, float *B, float *C, int n);
extern "C" void vector_add_gpu_d(double* A, double* B, double* C, int n);
icmm/gpu/inc/add.cuh
#pragma once
template<typename T>
__global__ void vector_add_kernel(T *A, T *B, T *C, int n)
{
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < n)
{
C[i] = A[i] + B[i] + 0.0f;
}
}
icmm/gpu/inc/sub.cuh
#pragma once
template<typename T>
__global__ void vector_sub_kernel(T *A, T *B, T *C, int n)
{
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < n)
{
C[i] = A[i] - B[i] + 0.0f;
}
}
icmm/gpu/sub.cu
#include <stdio.h>
#include <cuda_runtime.h>
#include "inc/sub.cuh"
extern "C" void vector_sub_gpu_s(float *A, float *B, float *C, int n)
{
dim3 grid, block;
block.x = 256;
grid.x = (n + block.x - 1) / block.x;
printf("CUDA kernel launch with %d blocks of %d threads\n", grid.x, block.x);
vector_sub_kernel<><<<grid, block>>>(A, B, C, n);
}
extern "C" void vector_sub_gpu_d(double *A, double *B, double *C, int n)
{
dim3 grid, block;
block.x = 256;
grid.x = (n + block.x - 1) / block.x;
printf("CUDA kernel launch with %d blocks of %d threads\n", grid.x, block.x);
vector_sub_kernel<><<<grid, block>>>(A, B, C, n);
}
icmm/gpu/sub.h
#pragma once
extern "C" void vector_sub_gpu_s(float *A, float *B, float *C, int n);
extern "C" void vector_sub_gpu_d(double *A, double *B, double *C, int n);
icmm/include/icmm.h
#pragma once
#include<cuda_runtime.h>
void hello_print();
void ic_S_add(float* A, float* B, float *C, int n);
void ic_D_add(double* A, double* B, double* C, int n);
void ic_S_sub(float* A, float* B, float *C, int n);
void ic_D_sub(float* A, float* B, float *C, int n);
icmm/Makefile
#libicmm.so
TARGETS = libicmm.so
GPU_ARCH= -arch=sm_70
all: $(TARGETS)
sub.o: gpu/sub.cu
nvcc -Xcompiler -fPIC $(GPU_ARCH) -c $<
add.o: gpu/add.cu
nvcc -Xcompiler -fPIC $(GPU_ARCH) -c $<
#-dc
#-rdc=true
add_link.o: add.o
nvcc -Xcompiler -fPIC $(GPU_ARCH) -dlink -o $@ $< -L/usr/local/cuda/lib64 -lcudart -lcudadevrt
ic_add.o: src/ic_add.cpp
g++ -fPIC -c $< -L/usr/local/cuda/lib64 -I/usr/local/cuda/include -lcudart -lcudadevrt -I./
ic_sub.o: src/ic_sub.cpp
g++ -fPIC -c $< -L/usr/local/cuda/lib64 -I/usr/local/cuda/include -lcudart -lcudadevrt -I./
$(TARGETS): sub.o ic_sub.o add.o ic_add.o add_link.o
mkdir -p lib
g++ -shared -fPIC $^ -o lib/libicmm.so -I/usr/local/cuda/include -L/usr/local/cuda/lib64 -lcudart -lcudadevrt
-rm -f *.o
.PHONY:clean
clean:
-rm -f *.o lib/*.so test ./bin/test
-rm -rf lib bin
icmm/makefile_bin
# executable
TARGET = test
GPU_ARCH = -arch=sm_70
all: $(TARGET)
add.o: gpu/add.cu
nvcc -dc -rdc=true $(GPU_ARCH) -c $<
sub.o: gpu/sub.cu
nvcc -dc -rdc=true $(GPU_ARCH) -c $<
add_link.o: add.o
nvcc $(GPU_ARCH) -dlink -o $@ $< -L/usr/local/cuda/lib64 -lcudart -lcudadevrt
sub_link.o: sub.o
nvcc $(GPU_ARCH) -dlink -o $@ $< -L/usr/local/cuda/lib64 -lcudart -lcudadevrt
ic_add.o: src/ic_add.cpp
g++ -c $< -L/usr/local/cuda/lib64 -I/usr/local/cuda/include -lcudart -lcudadevrt -I./
ic_sub.o: src/ic_sub.cpp
g++ -c $< -L/usr/local/cuda/lib64 -I/usr/local/cuda/include -lcudart -lcudadevrt -I./
test.o: testing/test.cpp
g++ -c $< -I/usr/local/cuda/include -L/usr/local/cuda/lib64 -lcudart -lcudadevrt -I./include
test: sub.o ic_sub.o sub_link.o add.o ic_add.o test.o add_link.o
g++ $^ -L/usr/local/cuda/lib64 -lcudart -lcudadevrt -o test
mkdir ./bin
cp ./test ./bin/
-rm -f *.o
.PHONY:clean
clean:
-rm -f *.o bin/* $(TARGET)
icmm/src/ic_add.cpp
#include <stdio.h>
#include <cuda_runtime.h>
#include "gpu/add.h"
//extern void vector_add_gpu(float *A, float *B, float *C, int n);
void hello_print()
{
printf("hello world!\n");
}
//void ic_add(float* A, float* B, float *C, int n){ vector_add_gpu(A, B, C, n);}
void ic_S_add(float* A, float* B, float *C, int n)
{
vector_add_gpu_s(A, B, C, n);
}
void ic_D_add(double* A, double* B, double* C, int n)
{
vector_add_gpu_d(A, B, C, n);
}
icmm/src/ic_sub.cpp
#include <stdio.h>
#include <cuda_runtime.h>
#include "gpu/sub.h"
//extern void vector_add_gpu(float *A, float *B, float *C, int n);
void ic_S_sub(float* A, float* B, float *C, int n)
{
vector_sub_gpu_s(A, B, C, n);
}
void ic_D_sub(double* A, double* B, double *C, int n)
{
vector_sub_gpu_d(A, B, C, n);
}
icmm/testing/Makefile
#test
TARGET = test
all: $(TARGET)
CXX_FLAGS = -I/usr/local/cuda/include -L/usr/local/cuda/lib64 -lcudart -lcudadevrt -I../include -L../
test.o: test.cpp
g++ -c $< $(CXX_FLAGS)
$(TARGET):test.o
g++ $< -o $@ -L/usr/local/cuda/lib64 -lcudart -lcudadevrt -L../lib -licmm
@echo "to execute: export LD_LIBRARY_PATH=${PWD}/../lib"
.PHONY:clean
clean:
-rm -f *.o $(TARGET)
icmm/testing/test.cpp
#include <cuda_runtime.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "icmm.h"
void add_test_s(float* A, float* B, float* C, int n)
{
ic_S_add(A, B, C, n);
printf("Copy output data from the CUDA device to the host memory\n");
float* h_C = (float*)malloc(n*sizeof(float));
cudaMemcpy(h_C, C, n*sizeof(float), cudaMemcpyDeviceToHost);
for (int i = 0; i < n; ++i)
{
printf("%3.2f ", h_C[i]);
// if (fabs(h_A[i] + h_B[i] - h_C[i]) > 1e-5) { fprintf(stderr, "Result verification failed at element %d!\n", i); exit(EXIT_FAILURE); }
}
printf("\nTest PASSED\n");
free(h_C);
}
/**/
void add_test_d(double* A, double* B, double* C, int n)
{
ic_D_add(A, B, C, n);
printf("Copy output data from the CUDA device to the host memory\n");
float *h_C = (float *)malloc(n*sizeof(double));
cudaMemcpy(h_C, C, sizeof(double), cudaMemcpyDeviceToHost);
for (int i = 0; i < n; ++i)
{
printf("%3.2f ", h_C[i]);
// if (fabs(h_A[i] + h_B[i] - h_C[i]) > 1e-5) { fprintf(stderr, "Result verification failed at element %d!\n", i); exit(EXIT_FAILURE); }
}
printf("\nTest PASSED\n");
free(h_C);
}
/**/
void sub_test_s(float* A, float* B, float* C, int n)
{
ic_S_sub(A, B, C, n);
printf("Copy output data from the CUDA device to the host memory\n");
float* h_C = (float*)malloc(n*sizeof(float));
cudaMemcpy(h_C, C, n*sizeof(float), cudaMemcpyDeviceToHost);
for (int i = 0; i < n; ++i)
{
printf("%3.2f ", h_C[i]);
// if (fabs(h_A[i] + h_B[i] - h_C[i]) > 1e-5) { fprintf(stderr, "Result verification failed at element %d!\n", i); exit(EXIT_FAILURE); }
}
printf("\nTest PASSED\n");
free(h_C);
}
int main(void)
{
int n = 50;
size_t size = n * sizeof(float);
float *h_A = (float *)malloc(size);
float *h_B = (float *)malloc(size);
float *h_C = (float *)malloc(size);
for (int i = 0; i < n; ++i)
{
h_A[i] = rand() / (float)RAND_MAX;
h_B[i] = rand() / (float)RAND_MAX;
}
float *d_A = NULL;
float *d_B = NULL;
float *d_C = NULL;
cudaMalloc((void **)&d_A, size);
cudaMalloc((void **)&d_B, size);
cudaMalloc((void **)&d_C, size);
cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
/*
int threadsPerBlock = 256;
int blocksPerGrid = (n + threadsPerBlock - 1) / threadsPerBlock;
printf("CUDA kernel launch with %d blocks of %d threads\n", blocksPerGrid, threadsPerBlock);
vector_add_kernel<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, n);
*/
//ic_add(d_A, d_B, d_C, n);
add_test_s(d_A, d_B, d_C, n);
sub_test_s(d_A, d_B, d_C, n);
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);
free(h_A);
free(h_B);
free(h_C);
printf("Done\n");
return 0;
}
2. 总结
.cu 代码给 g++ 的 .cpp 的代码需要使用 extern "C" 来修饰,所以一template 函数的实例化不能一直贯彻到 .cu 源代码的最顶层;