当前位置: 首页 > article >正文

【知识图谱】4、LLM大模型结合neo4j图数据库实现AI问答的功能

昨天写了一篇文章,使用fastapi直接操作neo4j图数据库插入数据的例子, 本文实现LLM大模型结合neo4j图数据库实现AI问答功能。

废话不多说,先上代码

import gradio as gr
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel
from langchain_openai import ChatOpenAI
from langchain.prompts import (
    ChatPromptTemplate,
    MessagesPlaceholder,
    SystemMessagePromptTemplate,
    HumanMessagePromptTemplate,
)
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain_community.graphs import Neo4jGraph
from langchain.chains import GraphCypherQAChain
import asyncio
from typing import List
import json

# Initialize FastAPI
app = FastAPI()

# Initialize Neo4j with timeout
try:
    graph = Neo4jGraph(
        url="bolt://localhost:7687",
        username="neo4j",
        password="password",
        database="neo4j",
        timeout=60  # 60 seconds timeout
    )
except Exception as e:
    print(f"Failed to connect to Neo4j: {e}")
    graph = None

# Fallback in-memory storage
job_seekers = []
job_positions = []

# Initialize LangChain components
llm = ChatOpenAI(
    temperature=0.95,
    model="glm-4-flash",
    openai_api_key="xxxxxx",
    openai_api_base="https://open.bigmodel.cn/api/paas/v4/"
)

prompt = ChatPromptTemplate(
    messages=[
        SystemMessagePromptTemplate.from_template(
            "You are a helpful AI assistant for a recruitment company. You can answer questions about job seekers and available positions."
        ),
        MessagesPlaceholder(variable_name="chat_history"),
        HumanMessagePromptTemplate.from_template("{question}")
    ]
)

memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
conversation = LLMChain(
    llm=llm,
    prompt=prompt,
    verbose=True,
    memory=memory
)

# Initialize GraphCypherQAChain if Neo4j is available
if graph:
    graph_qa = GraphCypherQAChain.from_llm(
        llm,
        graph=graph,
        verbose=True
    )


# Define chat function with timeout
async def chat_with_timeout(message, history):
    try:
        if graph:
            neo4j_response = await asyncio.wait_for(
                asyncio.to_thread(graph_qa.run, message),
                timeout=10.0  # 10 seconds timeout
            )
            return f"Based on our database: {neo4j_response}"
        else:
            # Fallback to in-memory data
            if "job seekers" in message.lower():
                return f"Based on our records: We have {len(job_seekers)} job seekers."
            elif "job positions" in message.lower():
                return f"Based on our records: We have {len(job_positions)} job positions."
            else:
                response = conversation.invoke({"question": message})
                return response['text']
    except asyncio.TimeoutError:
        return "I'm sorry, but the database query took too long. Please try a simpler question or try again later."
    except Exception as e:
        print(f"Error in chat function: {e}")
        response = conversation.invoke({"question": message})
        return response['text']


# # Create Gradio interface
iface = gr.ChatInterface(chat_with_timeout)
#
# # Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, iface, path="/")

# Run the app
if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="0.0.0.0", port=8000)

还是老规矩,先AI解释下,构建一个基于FastAPI和Gradio的聊天应用,主要功能如下:

1、初始化FastAPI应用和Neo4j图数据库连接(带超时处理);

2、定义了用于对话的LangChain组件,包括LLM模型、提示模板及对话记忆;

3、根据Neo4j是否可用初始化图查询链;

4、实现异步聊天函数,支持数据库查询数据检索,并处理超时错误;

5、使用Gradio创建用户界面并将应用挂载到FastAPI上。

核心关注graph_qa.run方法,执行原理:

  1. 自然语言处理:

当调用 graph_qa.run(message) 时,首先会将用户的自然语言查询(message)传递给大语言模型(LLM)。

  1. Cypher 查询生成:

LLM 分析用户的查询,并尝试将其转换为 Cypher 查询语言。Cypher 是 Neo4j 图数据库使用的查询语言。这个步骤涉及到理解用户意图和将其映射到图数据库的结构上。

  1. 数据库查询:

生成的 Cypher 查询被发送到 Neo4j 数据库执行。这个过程涉及到遍历图数据库,匹配节点和关系,并检索相关数据。

  1. 结果解释:

数据库返回查询结果后,这些结果会被传回给 LLM。LLM 会分析这些原始数据,理解其含义和上下文。

  1. 响应生成:

最后,LLM 会根据原始查询和数据库返回的结果,生成一个人类可读的响应。这个响应应该直接回答用户的问题,并可能包含从数据库中提取的具体信息。

在上一篇文章中,我已经在neo4j插入了一些数据,比如张三1的技能。 这里问一下

在这里插入图片描述

原文链接: 【知识图谱】4、LLM大模型结合neo4j图数据库实现AI问答的功能

在这里插入图片描述


http://www.kler.cn/a/286267.html

相关文章:

  • 【gRPC-gateway】option定义规则及HttpBody响应
  • 剑指offer 数组 持续更新中...
  • 单链表专题(中)
  • 【C++】类和对象(5)
  • Swing使用MVC模型架构
  • Java中的泛型
  • 【最全最详细】RPC与HTTP的区别
  • 信息学奥赛一本通:友好城市
  • 【bug记录6】css 写animation时,Safari浏览器最后一帧部分样式闪回
  • Adobe Acrobat Reader的高级功能详解
  • linux文件——用户缓冲区——概念深度探索、IO模拟实现
  • 【QNX+Android虚拟化方案】108 - emac0-phy 与 emac1-switch 双网卡兼容 方案实现
  • 【TiDB原理与实战详解】4、DM 迁移和TiCDC数据同步~学不会? 不存在的!
  • 推荐10个开源且实用的大模型
  • ComfyUI上手使用记录
  • 本地部署一个WordPress博客结合内网穿透实现异地远程访问本地站点
  • 【Mysql】面试官问Mybatis分页查询比较慢时你怎么优化?
  • 自然语言处理-词向量转换
  • ssrf进阶绕过思路与特殊玩法汇总
  • JavaWeb实战教程:如何一步步构建房产信息管理系统?MySQL助力数据管理
  • 深度学习基础—彩色图片的卷积运算
  • Flask-RESTFul 之 RESTFul 的第一个案例
  • Graylog配置用户权限以及常用搜索语法
  • k8s-pod 实战一 (创建pod,启动命令,参数,pod故障排除,拉取命令)
  • [易聊]软件项目测试报告
  • Windows上编译GTest并执行测试用例