当前位置: 首页 > article >正文

python机器学习课程——决策树全网最详解超详细笔记附代码

文章目录

  • 决策树算法
    • 一、简介
      • 1.概述
      • 2.决策树学习
      • 3.典型算法
      • 4.基本思想
      • 5.构造方法
      • 6.基本算法
    • 二、ID3决策树
      • 1、信息熵
      • 2、条件熵
      • 3、信息增益
      • 4、总结
      • 5、决策树进行分类的步骤
    • 三、ID3决策树示例
      • 1、数据集
      • 2、计算经验熵(香农熵)
      • 3、计算信息增益
      • 4、树的生成
      • 5、树的深度和广度计算
      • 6、未知数据的预测
      • 7、树的存储与读取(以二进制形式存储)
      • 8、完整代码
    • 四、C4.5决策树
      • 信息增益
    • 五、CART决策树
      • 基尼指数
    • 六、连续值与缺失值的处理
      • 1.连续值处理
      • 2.缺失值处理
    • 七、CART分类树示例
      • 1.数据集
      • 2.引入要用到的包
      • 3.读入数据集
      • 4.计算Gini指数
      • 5.取得节点划分的属性
      • 6.树节点
      • 7.树的生成
      • 8.树的遍历
      • 9.预测
      • 10.计算准确率
      • 11.完整代码
    • 八、CART回归树
      • 1.原理分析
      • 2.数据集
      • 3. 引入要用的包
      • 4.数据集的读取和处理
      • 5.area与特征值分离
      • 6.误差计算
      • 7.划分节点的数据与特征的获取
      • 8.树结点
      • 9.叶子节点回归值的计算
      • 10.生成树
      • 11.树的遍历
      • 12.预测
      • 13.“链表”式树转化为字典树
      • 14.树的可视化
      • 15.完整代码
    • 九、剪枝

决策树算法

一、简介

1.概述

决策树算法是一种逼近离散函数值的方法。它是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程。

决策树方法最早产生于上世纪60年代,到70年代末。由J Ross Quinlan提出了ID3算法,此算法的目的在于减少树的深度。但是忽略了叶子数目的研究。C4.5算法在ID3算法的基础上进行了改进,对于预测变量的缺值处理、剪枝技术、派生规则等方面作了较大改进,既适合于分类问题,又适合于回归问题。

决策树算法构造决策树来发现数据中蕴涵的分类规则.如何构造精度高、规模小的决策树是决策树算法的核心内容。决策树构造可以分两步进行。第一步,决策树的生成:由训练样本集生成决策树的过程。一般情况下,训练样本数据集是根据实际需要有历史的、有一定综合程度的,用于数据分析处理的数据集。第二步,决策树的剪枝:决策树的剪枝是对上一阶段生成的决策树进行检验、校正和修下的过程,主要是用新的样本数据集(称为测试数据集)中的数据校验决策树生成过程中产生的初步规则,将那些影响预衡准确性的分枝剪除。

2.决策树学习

目标:根据给定的训练数据集构建一个决策树模型,使它能够对实例进行正确的分类。决策树学习本质上是从训练数据集中归纳出一组分类规则。能对训练数据进行正确分类的决策树可能有多个,可能没有。在选择决策树时,应选择一个与训练数据矛盾较小的决策树,同时具有很好的泛化能力;而且选择的条件概率模型应该不仅对训练数据有很好的拟合,而且对未知数据有很好的预测。

损失函数:通常是正则化的极大似然函数

策略:是以损失函数为目标函数的最小化

因为从所有可能的决策树中选取最优决策树是NP完全问题,所以现实中决策树学习通常采用启发式方法,近似求解这一最优化问题,得到的决策树是次最优(sub-optimal)的。

决策树学习的算法通常是一个递归地选择最优特征,并根据该特征对训练数据进行分割,使得对各个子数据集有一个最好的分类的过程。包含特征选择、决策树的生成和决策树的剪枝过程。

剪枝:

目的:将树变得更简单,从而使它具有更好的泛化能力。

步骤:去掉过于细分的叶结点,使其回退到父结点,甚至更高的结点,然后将父结点或更高的结点改为新的叶结点。

决策树的生成对应模型的局部选择,决策树的剪枝对应于模型的全局选择。决策树的生成只考虑局部最优,决策树的剪枝则考虑全局最优。

特征选择:

如果特征数量很多,在决策树学习开始时对特征进行选择,只留下对训练数据有足够分类能力的特征。(例如把名字不作为一个特征进行选择)

3.典型算法

决策树的典型算法有ID3,C4.5,CART等。

国际权威的学术组织,数据挖掘国际会议ICDM (the IEEE International Conference on Data Mining)在2006年12月评选出了数据挖掘领域的十大经典算法中,C4.5算法排名第一。C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。C4.5算法产生的分类规则易于理解,准确率较高。不过在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,在实际应用中因而会导致算法的低效。

决策树算法的优点如下:

(1)分类精度高;

(2)生成的模式简单;

(3)对噪声数据有很好的健壮性。

因而是目前应用最为广泛的归纳推理算法之一,在数据挖掘中受到研究者的广泛关注。

4.基本思想

1)树以代表训练样本的单个结点开始。

2)如果样本都在同一个类.则该结点成为树叶,并用该类标记。

3)否则,算法选择最有分类能力的属性作为决策树的当前结点.

4)根据当前决策结点属性取值的不同,将训练样本数据集tlI分为若干子集,每个取值形成一个分枝,有几个取值形成几个分枝。匀针对上一步得到的一个子集,重复进行先前步骤,递4’I形成每个划分样本上的决策树。一旦一个属性出现在一个结点上,就不必在该结点的任何后代考虑它。

5)递归划分步骤仅当下列条件之一成立时停止:

①给定结点的所有样本属于同一类。

②没有剩余属性可以用来进一步划分样本.在这种情况下.使用多数表决,将给定的结点转换成树叶,并以样本中元组个数最多的类别作为类别标记,同时也可以存放该结点样本的类别分布,

③如果某一分枝tc,没有满足该分支中已有分类的样本,则以样本的多数类创建一个树叶。 [3]

5.构造方法

决策树构造的输入是一组带有类别标记的例子,构造的结果是一棵二叉树或多叉树。二叉树的内部节点(非叶子节点)一般表示为一个逻辑判断,如形式为a=aj的逻辑判断,其中a是属性,aj是该属性的所有取值:树的边是逻辑判断的分支结果。多叉树(ID3)的内部结点是属性,边是该属性的所有取值,有几个属性值就有几条边。树的叶子节点都是类别标记。 [3]

由于数据表示不当、有噪声或者由于决策树生成时产生重复的子树等原因,都会造成产生的决策树过大。因此,简化决策树是一个不可缺少的环节。寻找一棵最优决策树,主要应解决以下3个最优化问题:①生成最少数目的叶子节点;②生成的每个叶子节点的深度最小;③生成的决策树叶子节点最少且每个叶子节点的深度最小。

6.基本算法

二、ID3决策树

ID3算法是决策树的一种,它是基于奥卡姆剃刀原理的,即用尽量用较少的东西做更多的事。ID3算法,即Iterative Dichotomiser 3迭代二叉树3代,是Ross Quinlan发明的一种决策树算法,这个算法的基础就是上面提到的奥卡姆剃刀原理,越是小型的决策树越优于大的决策树,尽管如此,也不总是生成最小的树型结构,而是一个启发式算法。

在信息论中,期望信息越小,那么信息增益就越大,从而纯度就越高。ID3算法的核心思想就是以信息增益来度量属性的选择,选择分裂后信息增益最大的属性进行分裂。该算法采用自顶向下的贪婪搜搜索历可能的决策空间。

1、信息熵

熵(entropy)表示随机变量不确定性的度量,也就是熵越大,变量的不确定性就越大。设是一个有限值的离散随机变量,其概率分布为:

P ( X = x i ) = p i , i = 1 , 2 , … , n P(X = x_i) = p_i , i = 1,2,…,n PX=xi=pi,i=1,2,,n
则随机变量X的熵定义为:
H ( X ) = − ∑ i = 1 n l o g 2 p i ( 若 p i = 0 , 定义 0 l o g 0 = 0 ) H(X) = - \sum_{i = 1}^{n} {log_2 p_i} (若p_i = 0,定义 0log0 = 0) H(X)=i=1nlog2pi(pi=0,定义0log0=0)

2、条件熵

条件熵H(Y|X)表示在已知随机变量X条件下随机变量Y的不确定性。随机变量X给定的条件下随机变量Y的条件熵为:
H ( Y ∣ X ) = ∑ i = 1 n p i H ( Y ∣ X = x i ) , p i = P ( X = x i ) H(Y|X) = \sum_{i = 1}^{n}{p_i H(Y|X = x_i)} , p_i = P(X = x_i) H(YX)=i=1npiH(YX=xi),pi=P(X=xi)

3、信息增益

特征A对训练数据集D的信息增益g(D,A),定义为集合D的经验熵H(D)与特征A给定条件下D的经验条件熵H(D|A)之差,即:
g ( D , A ) = H ( D ) − H ( D ∣ A ) g(D,A) = H(D) - H(D|A) g(D,A)=H(D)H(DA)
信息增益大的特征具有更强的分类能力

4、总结

给定训练数据集D和特征A:

经验熵H(D)表示对数据集D进行分类的不确定性

经验条件熵H(D|A)表示在特征A给定的条件下对数据集D进行分类的不确定性

g ( D , A ) = H ( D ) − H ( D ∣ A ) g(D,A) = H(D) - H(D|A) g(D,A)=H(D)H(DA)表示由于特征A而使得对数据 D的分类的不确定性减少的程度。

5、决策树进行分类的步骤

  1. 利用样本数据集构造一颗决策树,并通过构造的决策树建立相应的分类模型。这个过程实际上是从一个数据中获取知识,进行规制提炼的过程。

  2. 利用已经建立完成的决策树模型对数据集进行分类。即对未知的数据集元组从根节点依次进行决策树的游历,通过一定的路径游历至某叶子节点,从而找到该数据元组所在的类或类的分布。

三、ID3决策树示例

在编写代码之前,我们先对数据集进行属性标注。

  • 年龄:0代表青年,1代表中年,2代表老年;
  • 有工作:0代表否,1代表是;
  • 有自己的房子:0代表否,1代表是;
  • 信贷情况:0代表一般,1代表好,2代表非常好;
  • 类别(是否给贷款):no代表否,yes代表是。

1、数据集

 dataSet=[[0, 0, 0, 0, 'no'],
            [0, 0, 0, 1, 'no'],
            [0, 1, 0, 1, 'yes'],
            [0, 1, 1, 0, 'yes'],
            [0, 0, 0, 0, 'no'],
            [1, 0, 0, 0, 'no'],
            [1, 0, 0, 1, 'no'],
            [1, 1, 1, 1, 'yes'],
            [1, 0, 1, 2, 'yes'],
            [1, 0, 1, 2, 'yes'],
            [2, 0, 1, 2, 'yes'],
            [2, 0, 1, 1, 'yes'],
            [2, 1, 0, 1, 'yes'],
            [2, 1, 0, 2, 'yes'],
            [2, 0, 0, 0, 'no']]
    labels=['年龄','有工作','有自己的房子','信贷情况']

2、计算经验熵(香农熵)

P ( X = x i ) = p i , i = 1 , 2 , … , n P(X = x_i) = p_i , i = 1,2,…,n PX=xi=pi,i=1,2,,n

H ( X ) = − ∑ i = 1 n l o g 2 p i ( 若 p i = 0 , 定义 0 l o g 0 = 0 ) H(X) = - \sum_{i = 1}^{n} {log_2 p_i} (若p_i = 0,定义 0log0 = 0) H(X)=i=1nlog2pi(pi=0,定义0log0=0)

from math import log
def calcShannonEnt(dataSet):
   # 统计数据数量
   numEntries = len(dataSet)
   # 存储每个label出现次数
   label_counts = {}
   # 统计label出现次数
   for featVec in dataSet:
       current_label = featVec[-1]
       if current_label not in label_counts:  # 提取label信息
           label_counts[current_label] = 0  # 如果label未在dict中则加入
       label_counts[current_label] += 1  # label计数

   shannon_ent = 0  # 经验熵
   # 计算经验熵
   for key in label_counts:
       prob = float(label_counts[key]) / numEntries
       shannon_ent -= prob * log(prob, 2)
   return shannon_ent
# 运行结果
# 0.9709505944546686

3、计算信息增益

g ( D , A ) = H ( D ) − H ( D ∣ A ) g(D,A) = H(D) - H(D|A) g(D,A)=H(D)H(DA)

def splitDataSet(data_set, axis, value):
    ret_dataset = []
    for feat_vec in data_set:
        if feat_vec[axis] == value:
            reduced_feat_vec = feat_vec[:axis]
            reduced_feat_vec.extend(feat_vec[axis + 1:])
            ret_dataset.append(reduced_feat_vec)
    return ret_dataset


def chooseBestFeatureToSplit(dataSet):
    # 特征数量
    num_features = len(dataSet[0]) - 1
    # 计算数据香农熵
    base_entropy = calcShannonEnt(dataSet)
    # 信息增益
    best_info_gain = 0.0
    # 最优特征索引值
    best_feature = -1
    # 遍历所有特征
    for i in range(num_features):
        # 获取dataset第i个特征
        feat_list = [exampel[i] for exampel in dataSet]
        # 创建set集合,元素不可重合
        unique_val = set(feat_list)
        # 经验条件熵
        new_entropy = 0.0
        # 计算信息增益
        for value in unique_val:
            # sub_dataset划分后的子集
            sub_dataset = splitDataSet(dataSet, i, value)
            # 计算子集的概率
            prob = len(sub_dataset) / float(len(dataSet))
            # 计算经验条件熵
            new_entropy += prob * calcShannonEnt(sub_dataset)
        # 信息增益
        info_gain = base_entropy - new_entropy
        # 打印每个特征的信息增益
        print("第%d个特征的信息增益为%.3f" % (i, info_gain))
        # 计算信息增益
        if info_gain > best_info_gain:
            # 更新信息增益
            best_info_gain = info_gain
            # 记录信息增益最大的特征的索引值
            best_feature = i
    print("最优索引值:" + str(best_feature))
    print()
    return best_feature
# 运行结果
# 第0个特征的信息增益为0.083
# 第1个特征的信息增益为0.324
# 第2个特征的信息增益为0.420
# 第3个特征的信息增益为0.363
# 最优索引值:2

4、树的生成

import operator
def majority_cnt(class_list):
    class_count = {}
    # 统计class_list中每个元素出现的次数
    for vote in class_list:
        if vote not in class_count:
            class_count[vote] = 0
            class_count[vote] += 1
        # 根据字典的值降序排列
        sorted_class_count = sorted(class_count.items(), key=operator.itemgetter(1), reverse=True)
    return sorted_class_count[0][0]


def creat_tree(dataSet, labels, featLabels):
    # 取分类标签(是否放贷:yes or no)
    class_list = [exampel[-1] for exampel in dataSet]
    # 如果类别完全相同则停止分类
    if class_list.count(class_list[0]) == len(class_list):
        return class_list[0]
    # 遍历完所有特征时返回出现次数最多的类标签
    if len(dataSet[0]) == 1:
        return majority_cnt(class_list)
    # 选择最优特征
    best_feature = chooseBestFeatureToSplit(dataSet)
    # 最优特征的标签
    best_feature_label = labels[best_feature]
    featLabels.append(best_feature_label)
    # 根据最优特征的标签生成树
    my_tree = {best_feature_label: {}}
    # 删除已使用标签
    del(labels[best_feature])
    # 得到训练集中所有最优特征的属性值
    feat_value = [exampel[best_feature] for exampel in dataSet]
    # 去掉重复属性值
    unique_vls = set(feat_value)
    for value in unique_vls:
        my_tree[best_feature_label][value] = creat_tree(splitDataSet(dataSet, best_feature, value), labels, featLabels)
    return my_tree
# 运行结果
# {'有自己的房子': {0: {'有工作': {0: 'no', 1: 'yes'}}, 1: 'yes'}}

5、树的深度和广度计算

def get_num_leaves(my_tree):
    num_leaves = 0
    first_str = next(iter(my_tree))
    second_dict = my_tree[first_str]
    for key in second_dict.keys():
        if type(second_dict[key]).__name__ == 'dict':
            num_leaves += get_num_leaves(second_dict[key])
        else:
                num_leaves += 1
    return num_leaves


def get_tree_depth(my_tree):
    max_depth = 0       # 初始化决策树深度
    firsr_str = next(iter(my_tree))     # python3中myTree.keys()返回的是dict_keys,不在是list,所以不能使用myTree.keys()[0]的方法获取结点属性,可以使用list(myTree.keys())[0]
    second_dict = my_tree[firsr_str]    # 获取下一个字典
    for key in second_dict.keys():
        if type(second_dict[key]).__name__ == 'dict':     # 测试该结点是否为字典,如果不是字典,代表此结点为叶子结点
            this_depth = 1 + get_tree_depth(second_dict[key])
        else:
            this_depth = 1
        if this_depth > max_depth:
            max_depth = this_depth      # 更新层数
    return max_depth
# 运行结果
# 2
# 3

6、未知数据的预测

def classify(input_tree, feat_labels, test_vec):
    # 获取决策树节点
    first_str = next(iter(input_tree))
    # 下一个字典
    second_dict = input_tree[first_str]
    feat_index = feat_labels.index(first_str)

    for key in second_dict.keys():
        if test_vec[feat_index] == key:
            if type(second_dict[key]).__name__ == 'dict':
                class_label = classify(second_dict[key], feat_labels, test_vec)
            else:
                class_label = second_dict[key]
    return class_label
# 测试
testVec = [0, 1, 1, 1]
    result = classify(myTree, featLabels, testVec)

    if result == 'yes':
        print('放贷')
    if result == 'no':
        print('不放贷')
# 运行结果
# 放贷

7、树的存储与读取(以二进制形式存储)

import pickle
def storeTree(input_tree, filename):
    # 存储树
    with open(filename, 'wb') as fw:
        pickle.dump(input_tree, fw)


def grabTree(filename):
    # 读取树
    fr = open(filename, 'rb')
    return pickle.load(fr)

8、完整代码

from math import log
import operator
import pickle


def calcShannonEnt(dataSet):
    # 统计数据数量
    numEntries = len(dataSet)
    # 存储每个label出现次数
    label_counts = {}
    # 统计label出现次数
    for featVec in dataSet:
        current_label = featVec[-1]
        if current_label not in label_counts:  # 提取label信息
            label_counts[current_label] = 0  # 如果label未在dict中则加入
        label_counts[current_label] += 1  # label计数

    shannon_ent = 0  # 经验熵
    # 计算经验熵
    for key in label_counts:
        prob = float(label_counts[key]) / numEntries
        shannon_ent -= prob * log(prob, 2)
    return shannon_ent


def splitDataSet(data_set, axis, value):
    ret_dataset = []
    for feat_vec in data_set:
        if feat_vec[axis] == value:
            reduced_feat_vec = feat_vec[:axis]
            reduced_feat_vec.extend(feat_vec[axis + 1:])
            ret_dataset.append(reduced_feat_vec)
    return ret_dataset


def chooseBestFeatureToSplit(dataSet):
    # 特征数量
    num_features = len(dataSet[0]) - 1
    # 计算数据香农熵
    base_entropy = calcShannonEnt(dataSet)
    # 信息增益
    best_info_gain = 0.0
    # 最优特征索引值
    best_feature = -1
    # 遍历所有特征
    for i in range(num_features):
        # 获取dataset第i个特征
        feat_list = [exampel[i] for exampel in dataSet]
        # 创建set集合,元素不可重合
        unique_val = set(feat_list)
        # 经验条件熵
        new_entropy = 0.0
        # 计算信息增益
        for value in unique_val:
            # sub_dataset划分后的子集
            sub_dataset = splitDataSet(dataSet, i, value)
            # 计算子集的概率
            prob = len(sub_dataset) / float(len(dataSet))
            # 计算经验条件熵
            new_entropy += prob * calcShannonEnt(sub_dataset)
        # 信息增益
        info_gain = base_entropy - new_entropy
        # 打印每个特征的信息增益
        print("第%d个特征的信息增益为%.3f" % (i, info_gain))
        # 计算信息增益
        if info_gain > best_info_gain:
            # 更新信息增益
            best_info_gain = info_gain
            # 记录信息增益最大的特征的索引值
            best_feature = i
    print("最优索引值:" + str(best_feature))
    print()
    return best_feature


def majority_cnt(class_list):
    class_count = {}
    # 统计class_list中每个元素出现的次数
    for vote in class_list:
        if vote not in class_count:
            class_count[vote] = 0
            class_count[vote] += 1
        # 根据字典的值降序排列
        sorted_class_count = sorted(class_count.items(), key=operator.itemgetter(1), reverse=True)
    return sorted_class_count[0][0]


def creat_tree(dataSet, labels, featLabels):
    # 取分类标签(是否放贷:yes or no)
    class_list = [exampel[-1] for exampel in dataSet]
    # 如果类别完全相同则停止分类
    if class_list.count(class_list[0]) == len(class_list):
        return class_list[0]
    # 遍历完所有特征时返回出现次数最多的类标签
    if len(dataSet[0]) == 1:
        return majority_cnt(class_list)
    # 选择最优特征
    best_feature = chooseBestFeatureToSplit(dataSet)
    # 最优特征的标签
    best_feature_label = labels[best_feature]
    featLabels.append(best_feature_label)
    # 根据最优特征的标签生成树
    my_tree = {best_feature_label: {}}
    # 删除已使用标签
    del(labels[best_feature])
    # 得到训练集中所有最优特征的属性值
    feat_value = [exampel[best_feature] for exampel in dataSet]
    # 去掉重复属性值
    unique_vls = set(feat_value)
    for value in unique_vls:
        my_tree[best_feature_label][value] = creat_tree(splitDataSet(dataSet, best_feature, value), labels, featLabels)
    return my_tree


def get_num_leaves(my_tree):
    num_leaves = 0
    first_str = next(iter(my_tree))
    second_dict = my_tree[first_str]
    for key in second_dict.keys():
        if type(second_dict[key]).__name__ == 'dict':
            num_leaves += get_num_leaves(second_dict[key])
        else:
                num_leaves += 1
    return num_leaves


def get_tree_depth(my_tree):
    max_depth = 0       # 初始化决策树深度
    firsr_str = next(iter(my_tree))     # python3中myTree.keys()返回的是dict_keys,不在是list,所以不能使用myTree.keys()[0]的方法获取结点属性,可以使用list(myTree.keys())[0]
    second_dict = my_tree[firsr_str]    # 获取下一个字典
    for key in second_dict.keys():
        if type(second_dict[key]).__name__ == 'dict':     # 测试该结点是否为字典,如果不是字典,代表此结点为叶子结点
            this_depth = 1 + get_tree_depth(second_dict[key])
        else:
            this_depth = 1
        if this_depth > max_depth:
            max_depth = this_depth      # 更新层数
    return max_depth


def classify(input_tree, feat_labels, test_vec):
    # 获取决策树节点
    first_str = next(iter(input_tree))
    # 下一个字典
    second_dict = input_tree[first_str]
    feat_index = feat_labels.index(first_str)

    for key in second_dict.keys():
        if test_vec[feat_index] == key:
            if type(second_dict[key]).__name__ == 'dict':
                class_label = classify(second_dict[key], feat_labels, test_vec)
            else:
                class_label = second_dict[key]
    return class_label


def storeTree(input_tree, filename):
    # 存储树
    with open(filename, 'wb') as fw:
        pickle.dump(input_tree, fw)


def grabTree(filename):
    # 读取树
    fr = open(filename, 'rb')
    return pickle.load(fr)


if __name__ == "__main__":
    # 数据集
    dataSet = [[0, 0, 0, 0, 'no'],
               [0, 0, 0, 1, 'no'],
               [0, 1, 0, 1, 'yes'],
               [0, 1, 1, 0, 'yes'],
               [0, 0, 0, 0, 'no'],
               [1, 0, 0, 0, 'no'],
              # [1, 0, 0, 0, 'yes'],
               [1, 0, 0, 1, 'no'],
               [1, 1, 1, 1, 'yes'],
               [1, 0, 1, 2, 'yes'],
               [1, 0, 1, 2, 'yes'],
               [2, 0, 1, 2, 'yes'],
               [2, 0, 1, 1, 'yes'],
               [2, 1, 0, 1, 'yes'],
               [2, 1, 0, 2, 'yes'],
               [2, 0, 0, 0, 'no']]
    # 分类属性
    labels = ['年龄', '有工作', '有自己的房子', '信贷情况']

    print(dataSet)
    print()
    print(calcShannonEnt(dataSet))
    print()

    featLabels = []
    myTree = creat_tree(dataSet, labels, featLabels)
    print(myTree)
    print(get_tree_depth(myTree))
    print(get_num_leaves(myTree))

    #测试数据
    testVec = [0, 1, 1, 1]
    result = classify(myTree, featLabels, testVec)

    if result == 'yes':
        print('放贷')
    if result == 'no':
        print('不放贷')

    # 存储树
    storeTree(myTree,'classifierStorage.txt')

    # 读取树
    myTree2 = grabTree('classifierStorage.txt')
    print(myTree2)

    testVec2 = [1, 0]
    result2 = classify(myTree2, featLabels, testVec)
    if result2 == 'yes':
        print('放贷')
    if result2 == 'no':
        print('不放贷')
# 运行结果
# [[0, 0, 0, 0, 'no'], [0, 0, 0, 1, 'no'], [0, 1, 0, 1, 'yes'], [0, 1, 1, 0, 'yes'], [0, 0, 0, 0, 'no'], [1, 0, 0, 0, 'no'], [1, 0, 0, 1, 'no'], [1, 1, 1, 1, 'yes'], [1, 0, 1, 2, 'yes'], [1, 0, 1, 2, 'yes'], [2, 0, 1, 2, 'yes'], [2, 0, 1, 1, 'yes'], [2, 1, 0, 1, 'yes'], [2, 1, 0, 2, 'yes'], [2, 0, 0, 0, 'no']]

# 0.9709505944546686

# 第0个特征的信息增益为0.083
# 第1个特征的信息增益为0.324
# 第2个特征的信息增益为0.420
# 第3个特征的信息增益为0.363
# 最优索引值:2

# 第0个特征的信息增益为0.252
# 第1个特征的信息增益为0.918
# 第2个特征的信息增益为0.474
# 最优索引值:1

# {'有自己的房子': {0: {'有工作': {0: 'no', 1: 'yes'}}, 1: 'yes'}}
# 2
# 3
# 放贷
# {'有自己的房子': {0: {'有工作': {0: 'no', 1: 'yes'}}, 1: 'yes'}}
# 放贷

四、C4.5决策树

C4.5决策树实在ID3决策树的基础上进行了优化。将节点的划分标准替换为了信息增益率,能够处理连续值,并且可以处理缺失值,以及能够进行剪枝操作。

信息增益

信息增益率使用“分裂信息”值将信息增益规范化。分类信息类似于Info(D),定义如下:
S p l i t I n f o A ( D ) = − ∑ j = 1 v ∣ D j ∣ ∣ D ∣ ∗ l o g 2 ( ∣ D j ∣ ∣ D ∣ ) SplitInfo_A(D)=-\sum^{v}_{j=1}\frac{|D_j|}{|D|}*log_2(\frac{|D_j|}{|D|}) SplitInfoA(D)=j=1vDDjlog2(DDj)

这个值表示通过将训练数据集D划分成对应于属性A测试的v个输出的v个划分产生的信息。信息增益率定义:
G a i n R a t i o ( A ) = G a i n ( A ) S p l i t I n f o ( a ) GainRatio(A)=\frac{Gain(A)}{SplitInfo(a)} GainRatio(A)=SplitInfo(a)Gain(A)
此处的Gain(A)即是前文介绍ID3时的g(D,A)

选择具有最大增益率的属性作为分裂属性。

当属性有很多值时,虽然信息增益变大了,但是相应的属性熵也会变大。所以最终计算的信息增益率并不是很大。在一定程度上可以避免ID3倾向于选择取值较多的属性作为节点的问题。

具体树的构造方法与前文的ID3相同,这里不再赘述

五、CART决策树

CART 树(分类回归树)分为分类树和回归树。顾名思义,分类树用于处理分类问题;回归树用来处理回归问题。我们知道分类和回归是机器学习领域两个重要的方向。分类问题输出特征向量对应的分类结果,回归问题输出特征向量对应的预测值。

分类树和 ID3、C4.5 决策树相似,都用来处理分类问题。不同之处是划分方法。分类树利用基尼指数进行二分。如图所示就是一个分类树。

回归树用来处理回归问题。回归将已知数据进行拟合,对于目标变量未知的数据可以预测目标变量的值。如图 所示就是一个回归树,其中 s 是切分点,x 是特征,y 是目标变量。可以看出图 2 利用切分点 s 将特征空间进行划分,y 是在划分单元上的输出值。回归树的关键是如何选择切分点、如何利用切分点划分数据集、如何预测 y 的取值。

基尼指数

数据集D的纯度可以用基尼值来度量:
G i n i ( D ) = ∑ k = 1 ∣ y ∣ ∑ k ′ ≠ k p k p k ′ = 1 − ∑ k = 1 ∣ y ∣ p k 2 Gini(D)=\sum^{|y|}_{k=1}\sum_{k'\not=k}p_kp_k'\\ =1-\sum^{|y|}_{k=1}p_k^2 Gini(D)=k=1yk=kpkpk=1k=1ypk2

直观来说,Gini(D)反映了从数据集D中随机选取两个样本,其类别标记不一致的概率,因此Gini(D)越小,则数据集D的纯度越高。

属性a的基尼指数定义为
G i n i _ i n d e x ( D , a ) = ∑ V = 1 V ∣ D v ∣ ∣ D ∣ G i n i ( D v ) Gini\_index(D,a)=\sum^{V}_{V=1}\frac{|D^v|}{|D|}Gini(D^v) Gini_index(D,a)=V=1VDDvGini(Dv)
于是,我们在候选属性集合A中,选择那个使得划分后基尼指数最小的属性作为最优划分属性,即 a ∗ = a r g   m i n   G i n i _ i n d e x ( D , a ) , 其中 a ∈ A a_*= arg\ min\ Gini\_index(D,a),其中a\in A a=arg min Gini_index(D,a),其中aA

六、连续值与缺失值的处理

1.连续值处理

由于连续属性的可取值数目不再有限,因此,不能直接根据连续属性的可取值来对结点进行划分.此时,连续属性离散化技术可派上用场.最简单的策略是采用二分法(bi-partition)对连续属性进行处理,这正是C4.5决策树算法中采用的机制[Quinlan, 1993].

后续在cart回归树案例中会有具体代码的展示

2.缺失值处理

由于我没有准备这方面的代码,就在这里分享一个写的极为详细的博客

https://blog.csdn.net/u012328159/article/details/79413610

感兴趣的也可以自己去看瓜书上的讲解

七、CART分类树示例

1.数据集

依旧为上一次用到的Titanic数据集,在此不做过多介绍分析了。

与上次的区别在于为了形成一个二叉树,所有特征离散化后在子叶点分类时只分为了1和非1两类

2.引入要用到的包

import csv
import operator
import copy
import numpy as np

3.读入数据集

def loadDataset(filename):
    with open(filename, 'r') as f:
        lines = csv.reader(f)
        data_set = list(lines)
    if filename != 'titanic.csv':
        for i in range(len(data_set)):
            del(data_set[i][0])
    # 整理数据
    for i in range(len(data_set)):
        del(data_set[i][0])
        del(data_set[i][2])
        data_set[i][4] += data_set[i][5]
        del(data_set[i][5])
        del(data_set[i][5])
        del(data_set[i][6])
        del(data_set[i][-1])

    category = data_set[0]

    del (data_set[0])
    # 转换数据格式
    for data in data_set:
        data[0] = int(data[0])
        data[1] = int(data[1])
        if data[3] != '':
            data[3] = float(data[3])
        else:
            data[3] = None
        data[4] = float(data[4])
        data[5] = float(data[5])
    # 补全缺失值 转换记录方式 分类
    for data in data_set:
        if data[3] is None:
            data[3] = 28
        # male : 1, female : 0
        if data[2] == 'male':
            data[2] = 1
        else:
            data[2] = 0
        # age <25 为0, 25<=age<31为1,age>=31为2
        if data[3] < 60: # 但是测试得60分界准确率最高???!!!
            data[3] = 0
        else:
            data[3] = 1
        # sibsp&parcg以2为界限,小于为0,大于为1
        if data[4] < 2:
            data[4] = 0
        else:
            data[4] = 1
        # fare以64为界限
        if data[-1] < 64:
            data[-1] = 0
        else:
            data[-1] = 1
    return data_set, category

4.计算Gini指数

按照公式计算基尼指数

def gini(data, i):

    num = len(data)
    label_counts = [0, 0, 0, 0]

    p_count = [0, 0, 0, 0]

    gini_count = [0, 0, 0, 0]

    for d in data:
        label_counts[d[i]] += 1

    for l in range(len(label_counts)):
        for d in data:
            if label_counts[l] != 0 and d[0] == 1 and d[i] == l:
                p_count[l] += 1

    print(label_counts)
    print(p_count)

    for l in range(len(label_counts)):
        if label_counts[l] != 0:
            gini_count[l] = 2*(p_count[l]/label_counts[l])*(1 - p_count[l]/label_counts[l])

    gini_p = 0
    for l in range(len(gini_count)):
        gini_p += (label_counts[l]/num)*gini_count[l]

    print(gini_p)

    return gini_p

5.取得节点划分的属性

def get_best_feature(data, category):
    if len(category) == 2:
        return 1, category[1]

    feature_num = len(category) - 1
    data_num = len(data)

    feature_gini = []

    for i in range(1, feature_num+1):
        feature_gini.append(gini(data, i))

    min = 0

    for i in range(len(feature_gini)):
        if feature_gini[i] < feature_gini[min]:
            min = i

    print(feature_gini)
    print(category)
    print(min+1)
    print(category[min+1])

    return min+1, category[min + 1]

6.树节点

这里不使用字典建立二叉树(前面ID3用过了),这里自己构建链表式的树

class Node(object):
    def __init__(self, item):
        self.name = item
        self.lchild = None
        self.rchild = None

7.树的生成

其中涉及到了预剪枝,后文会再说这个问题

def majority_cnt(class_list):
    class_count = {}
    # 统计class_list中每个元素出现的次数
    for vote in class_list:
        if vote not in class_count:
            class_count[vote] = 0
        class_count[vote] += 1
        # 根据字典的值降序排列
        sorted_class_count = sorted(class_count.items(), key=operator.itemgetter(1), reverse=True)
    return sorted_class_count[0][0]
    
def creat_tree(data, labels, feature_labels=[]):
# 三种结束情况
    # 取分类标签(survivor or death)
    class_list = [exampel[0] for exampel in data]

    if class_list == []:
        return Node(0)
    # 如果类别完全相同则停止分类
    if class_list.count(class_list[0]) == len(class_list):
        return Node(class_list[0])
    # 遍历完所有特征时返回出现次数最多的类标签
    if len(data[0]) == 1:
        return Node(majority_cnt(class_list))

    # 最优特征的标签
    best_feature_num, best_feature_label = get_best_feature(data, labels)

    feature_labels.append(best_feature_label)

    node = Node(best_feature_label)

    ldata = []
    rdata = []

    for d in data:
        if d[best_feature_num] == 1:
            del(d[best_feature_num])
            ldata.append(d)
        else:
            del(d[best_feature_num])
            rdata.append(d)

    labels2 = copy.deepcopy(labels)
    del(labels2[best_feature_num])

    tree = node
    tree.lchild = creat_tree(ldata, labels2, feature_labels)
    tree.rchild = creat_tree(rdata, labels2, feature_labels)

    return tree

8.树的遍历

def breadth_travel(tree):
    """广度遍历"""
    queue = [tree]
    while queue:
        cur_node = queue.pop(0)
        print(cur_node.name, end=" ")
        if cur_node.lchild is not None:
            queue.append(cur_node.lchild)
        if cur_node.rchild is not None:
            queue.append(cur_node.rchild)
    print()

9.预测

def prediction(t_tree, test, labels):
    result = []
    for data in test:
        l = copy.deepcopy(labels)
        tree = t_tree
        for i in range(len(labels)):
            if tree.name == 1 or tree.name == 0:
                result.append(tree.name)
                break
            if len(data) == 1:
                result.append(0)
                break
            j = 1
            while j < len(data)-1:
                if tree.name == l[j]:
                    break
                j += 1

            if data[j] == 1:
                tree = tree.lchild
            else:
                tree = tree.rchild
            del(l[j])
            del(data[j])
    return result

10.计算准确率

result = prediction(my_tree, test_set, category)

counts = 0

for i in range(len(test_set)):
	if test_set[i][0] == result[i]:
		counts += 1
accurancy = counts/len(test_set)

print(accurancy)

11.完整代码

import csv
import operator
import copy
import numpy as np


# 0PassengerId:乘客的ID                               不重要
# 1Survived:乘客是否获救,Key:0=没获救,1=已获救
# 2Pclass:乘客船舱等级(1/2/3三个等级舱位)
# 3Name:乘客姓名                                       不重要
# 4Sex:性别
# 5Age:年龄
# 6SibSp:乘客在船上的兄弟姐妹/配偶数量
# 7Parch:乘客在船上的父母/孩子数量
# 8Ticket:船票号                                         不重要
# 9Fare:船票价
# 10Cabin:客舱号码                                        不重要
# 11Embarked:登船的港口                                   不重要



def loadDataset(filename):
    with open(filename, 'r') as f:
        lines = csv.reader(f)
        data_set = list(lines)
    if filename != 'titanic.csv':
        for i in range(len(data_set)):
            del(data_set[i][0])
    # 整理数据
    for i in range(len(data_set)):
        del(data_set[i][0])
        del(data_set[i][2])
        data_set[i][4] += data_set[i][5]
        del(data_set[i][5])
        del(data_set[i][5])
        del(data_set[i][6])
        del(data_set[i][-1])

    category = data_set[0]

    del (data_set[0])
    # 转换数据格式
    for data in data_set:
        data[0] = int(data[0])
        data[1] = int(data[1])
        if data[3] != '':
            data[3] = float(data[3])
        else:
            data[3] = None
        data[4] = float(data[4])
        data[5] = float(data[5])
    # 补全缺失值 转换记录方式 分类
    for data in data_set:
        if data[3] is None:
            data[3] = 28
        # male : 1, female : 0
        if data[2] == 'male':
            data[2] = 1
        else:
            data[2] = 0
        # age <25 为0, 25<=age<31为1,age>=31为2
        if data[3] < 60: # 但是测试得60分界准确率最高???!!!
            data[3] = 0
        else:
            data[3] = 1
        # sibsp&parcg以2为界限,小于为0,大于为1
        if data[4] < 2:
            data[4] = 0
        else:
            data[4] = 1
        # fare以64为界限
        if data[-1] < 64:
            data[-1] = 0
        else:
            data[-1] = 1
    return data_set, category


def gini(data, i):

    num = len(data)
    label_counts = [0, 0, 0, 0]

    p_count = [0, 0, 0, 0]

    gini_count = [0, 0, 0, 0]

    for d in data:
        label_counts[d[i]] += 1

    for l in range(len(label_counts)):
        for d in data:
            if label_counts[l] != 0 and d[0] == 1 and d[i] == l:
                p_count[l] += 1

    print(label_counts)
    print(p_count)

    for l in range(len(label_counts)):
        if label_counts[l] != 0:
            gini_count[l] = 2*(p_count[l]/label_counts[l])*(1 - p_count[l]/label_counts[l])

    gini_p = 0
    for l in range(len(gini_count)):
        gini_p += (label_counts[l]/num)*gini_count[l]

    print(gini_p)

    return gini_p


def get_best_feature(data, category):
    if len(category) == 2:
        return 1, category[1]

    feature_num = len(category) - 1
    data_num = len(data)

    feature_gini = []

    for i in range(1, feature_num+1):
        feature_gini.append(gini(data, i))

    min = 0

    for i in range(len(feature_gini)):
        if feature_gini[i] < feature_gini[min]:
            min = i

    print(feature_gini)
    print(category)
    print(min+1)
    print(category[min+1])

    return min+1, category[min + 1]


def majority_cnt(class_list):
    class_count = {}
    # 统计class_list中每个元素出现的次数
    for vote in class_list:
        if vote not in class_count:
            class_count[vote] = 0
        class_count[vote] += 1
        # 根据字典的值降序排列
        sorted_class_count = sorted(class_count.items(), key=operator.itemgetter(1), reverse=True)
    return sorted_class_count[0][0]


class Node(object):
    def __init__(self, item):
        self.name = item
        self.lchild = None
        self.rchild = None


def creat_tree(data, labels, feature_labels=[]):
# 三种结束情况
    # 取分类标签(survivor or death)
    class_list = [exampel[0] for exampel in data]

    if class_list == []:
        return Node(0)
    # 如果类别完全相同则停止分类
    if class_list.count(class_list[0]) == len(class_list):
        return Node(class_list[0])
    # 遍历完所有特征时返回出现次数最多的类标签
    if len(data[0]) == 1:
        return Node(majority_cnt(class_list))

    # 最优特征的标签
    best_feature_num, best_feature_label = get_best_feature(data, labels)

    feature_labels.append(best_feature_label)

    node = Node(best_feature_label)

    ldata = []
    rdata = []

    for d in data:
        if d[best_feature_num] == 1:
            del(d[best_feature_num])
            ldata.append(d)
        else:
            del(d[best_feature_num])
            rdata.append(d)

    labels2 = copy.deepcopy(labels)
    del(labels2[best_feature_num])

    tree = node
    tree.lchild = creat_tree(ldata, labels2, feature_labels)
    tree.rchild = creat_tree(rdata, labels2, feature_labels)

    return tree


def breadth_travel(tree):
    """广度遍历"""
    queue = [tree]
    while queue:
        cur_node = queue.pop(0)
        print(cur_node.name, end=" ")
        if cur_node.lchild is not None:
            queue.append(cur_node.lchild)
        if cur_node.rchild is not None:
            queue.append(cur_node.rchild)
    print()

def prediction(t_tree, test, labels):
    result = []
    for data in test:
        l = copy.deepcopy(labels)
        tree = t_tree
        for i in range(len(labels)):
            if tree.name == 1 or tree.name == 0:
                result.append(tree.name)
                break
            if len(data) == 1:
                result.append(0)
                break
            j = 1
            while j < len(data)-1:
                if tree.name == l[j]:
                    break
                j += 1

            if data[j] == 1:
                tree = tree.lchild
            else:
                tree = tree.rchild
            del(l[j])
            del(data[j])
    return result


if __name__ == "__main__":

    test_set, category = loadDataset('titanic_test.csv')
    train_set, category = loadDataset('titanic_train.csv')

    print(category)
    print(train_set)
    print()
    print(test_set)


    my_tree = creat_tree(train_set, category)
    print(my_tree)
    breadth_travel(my_tree)
    print(category)
    print(test_set)

    test = copy.deepcopy(test_set)

    result = prediction(my_tree, test_set, category)
    print(len(test_set))

    print(result)

    counts = 0

    for i in range(len(test_set)):
        if test_set[i][0] == result[i]:
            counts += 1

    print(counts)
    accurancy = counts/len(test_set)
    print(accurancy)

八、CART回归树

1.原理分析

CART回归树预测回归连续型数据,假设X与Y分别是输入和输出变量,并且Y是连续变量。在训练数据集所在的输入空间中,递归的将每个区域划分为两个子区域并决定每个子区域上的输出值,构建二叉决策树。

选择最优切分变量j与切分点s:遍历变量j,对规定的切分变量j扫描切分点s,选择使下式得到最小值时的(j,s)对。其中Rm是被划分的输入空间,cm是空间Rm对应的固定输出值。

用选定的(j,s)对,划分区域并决定相应的输出值

继续对两个子区域调用上述步骤将输入空间划分为M个区域R1,R2,…,Rm,生成决策树。

当输入空间划分确定时,可以用平方误差来表示回归树对于训练数据的预测方法,用平方误差最小的准则求解每个单元上的最优输出值。

2.数据集

此次使用forestfires的数据集,共有12列特征

# 1. Montesinho公园地图内的X-x轴空间坐标:1到9
# 2. Montesinho公园地图内的 Y-y轴空间坐标:2到9
# 3.每年的月份-月:“ jan”到“ dec'
# 4.每天-星期几:从“周一”到“星期日”
# 5.FFMC
# - FWI系统中的FFMC指数:18.7至96.20 6. DMC-FWI系统中的DMC指数:1.1至291.3 7. DC- FWI系统的DC指数:7.9至860.6
# 8. ISI-FWI系统的ISI指数:0.0至56.10
# 9. temp- 摄氏温度:2.2至33.30
# 10. RH-相对湿度(%):15.0至100
# 11。风-以km / h为单位的风速:0.40至9.40
# 12.雨量-外部雨量,单位为mm / m2:0.0到6.4
# 13.面积-森林的燃烧面积(以ha为单位):0.00到1090.84
# (此输出变量非常偏向0.0,因此使用对数变换)

3. 引入要用的包

import csv
import copy
import calendar # 月份转换为数字的包
from math import log1p
from math import sqrt
from graphviz import Digraph

4.数据集的读取和处理

day为无关属性应该取出,area根据说明应该使用对数变换,month应该将字符转化为数字

def loadDataset(filename):
    with open(filename, 'r') as f:
        lines = csv.reader(f)
        data_set = list(lines)
    for i in range(len(data_set)):
        del(data_set[i][0])
    # 整理数据
    for i in range(len(data_set)):
        del(data_set[i][3])

    category = data_set[0]

    del(data_set[0])

    for i in range(len(data_set)):
        for j in range(len(data_set[0])):
            if j == 2:
                data_set[i][j] = str.capitalize(data_set[i][j])
                data_set[i][j] = list(calendar.month_abbr).index(data_set[i][j])
            data_set[i][j] = float(data_set[i][j])
            if j == 11:
                data_set[i][j] = log1p(data_set[i][j]+1)

    return data_set, category

5.area与特征值分离

def split_data(data):

    data_set = copy.deepcopy(data)

    data_mat = []
    label_mat = []
    for i in range(len(data_set)):
        label_mat.append(data_set[i][-1])
        del(data_set[i][-1])
        data_mat.append(data_set[i])

    print(data_mat)
    print(label_mat)

    return data_mat, label_mat

6.误差计算

def split_data(data):

    data_set = copy.deepcopy(data)

    data_mat = []
    label_mat = []
    for i in range(len(data_set)):
        label_mat.append(data_set[i][-1])
        del(data_set[i][-1])
        data_mat.append(data_set[i])

    print(data_mat)
    print(label_mat)

    return data_mat, label_mat

7.划分节点的数据与特征的获取

def get_best_split_value(data, result):

    data_set = set(data)
    data_set = list(data_set)
    data.sort()
    length = len(data_set)
    if length == 1:
        return float("Inf"), float("Inf")
    print(data_set)
    split_value = []

    for i in range(length-1):
        split_value.append((data_set[i+1] + data_set[i])/2)

    # if len(split_value) == 2:
    #     return (split_value[0]+split_value[1])/2, mse(data, (split_value[0]+split_value[1])/2, result)

    m = []

    for i in range(len(split_value)):
        m.append(mse(data, split_value[i], result))

    min_mse = 0

    for i in range(len(m)):
        if m[i] < m[min_mse]:
            min_mse = i

    print(m)

    return split_value[min_mse], m[min_mse]


def get_best_feature(data, category):
    length = len(category)-1

    data_set, result = split_data(data)

    feature_mse = []

    split_feature_value = []

    feature_values = []

    for i in range(length):
        feature_mse.append(0)
        split_feature_value.append(0)

        feature_values.append([])
        for j in range(len(data_set)):
            feature_values[i].append(data_set[j][i])

    for i in range(length):
         split_feature_value[i], feature_mse[i] = get_best_split_value(feature_values[i], result)

    min_f = 0
    for i in range(length):
        if feature_mse[i] < feature_mse[min_f]:
            min_f = i

    print(feature_mse)

    return min_f, split_feature_value[min_f]

8.树结点

class Node(object):
    def __init__(self, category, item):
        self.name = category
        self.elem = item
        self.lchild = None
        self.rchild = None

9.叶子节点回归值的计算

def leaf_value(data):
    sum = 0
    for i in range(len(data)):
        sum += data[i][-1]

    return sum/len(data)

10.生成树

def creat_tree(data, labels, feature_labels=[]):
# 结束情况
    if len(labels) == 1:
        return Node('result', leaf_value(data))

    if len(data) < 0.05*len(train_set):
        return Node('result', leaf_value(data))


    # 最优特征的标签
    best_feature_num, best_feature_value = get_best_feature(data, labels)

    feature_labels.append(labels[best_feature_num])

    node = Node(labels[best_feature_num], best_feature_value)

    ldata = []
    rdata = []

    for d in data:
        if d[best_feature_num] <= best_feature_value:
            del(d[best_feature_num])
            ldata.append(d)
        else:
            del(d[best_feature_num])
            rdata.append(d)

    labels2 = copy.deepcopy(labels)
    del(labels2[best_feature_num])

    tree = node
    tree.lchild = creat_tree(ldata, labels2, feature_labels)
    tree.rchild = creat_tree(rdata, labels2, feature_labels)

    return tree

11.树的遍历

def breadth_travel(tree):
    """广度遍历"""
    queue = [tree]
    while queue:
        cur_node = queue.pop(0)
        print(cur_node.name, end=" ")
        print(cur_node.elem, end=" ")
        if cur_node.lchild is not None:
            queue.append(cur_node.lchild)
        if cur_node.rchild is not None:
            queue.append(cur_node.rchild)
    print()

12.预测

def prediction(t_tree, test, labels):
    result = []
    test_mat, x = split_data(test)
    for data in test_mat:
        l = copy.deepcopy(labels)
        tree = t_tree
        for i in range(len(labels)):
            if tree.name == "result":
                result.append(tree.elem)
                break
            j = 0
            while j:
                if tree.name == l[j]:
                    break
                j += 1

            if data[j] <= tree.elem:
                tree = tree.lchild
            else:
                tree = tree.rchild
            del(l[j])
            del(data[j])
    return result

13.“链表”式树转化为字典树

def tree_to_dict(tree, tree_dict):
    if tree.lchild == None and tree.rchild == None:
        tree_dict[tree.name+str(tree.elem)] = str(tree.elem)
        return tree_dict[tree.name+str(tree.elem)]

    tree_dict[tree.name+str(tree.elem)] = {}

    if tree.lchild != None:
        tree_to_dict(tree.lchild, tree_dict[tree.name+str(tree.elem)])
    if tree.rchild != None:
        tree_to_dict(tree.rchild, tree_dict[tree.name+str(tree.elem)])

    return tree_dict

14.树的可视化

def plot_model(tree, name):
    g = Digraph("G", filename=name, format='png', strict=False)
    first_label = list(tree.keys())[0]
    g.node("0", first_label)
    _sub_plot(g, tree, "0")
    g.view()


root = "0"


def _sub_plot(g, tree, inc):
    global root

    first_label = list(tree.keys())[0]
    ts = tree[first_label]

    if type(ts).__name__ != 'dict':
        root = str(int(root) + 1)
        g.node(root, str(tree[first_label]))
        g.edge(inc, root, str(ts))
        return

    for i in ts.keys():
        if isinstance(tree[first_label][i], dict):
            root = str(int(root) + 1)
            g.node(root, list(tree[first_label][i].keys())[0])
            g.edge(inc, root, str(i))
            _sub_plot(g, tree[first_label][i], root)
        else:
            root = str(int(root) + 1)
            g.node(root, str(tree[first_label][i]))
            g.edge(inc, root, str(i))

15.完整代码

import csv
import copy
import calendar
from math import log1p
from math import sqrt
from graphviz import Digraph



# 1. Montesinho公园地图内的X-x轴空间坐标:1到9
# 2. Montesinho公园地图内的 Y-y轴空间坐标:2到9
# 3.每年的月份-月:“ jan”到“ dec'
# 4.每天-星期几:从“周一”到“星期日”
# 5.FFMC
# - FWI系统中的FFMC指数:18.7至96.20 6. DMC-FWI系统中的DMC指数:1.1至291.3 7. DC- FWI系统的DC指数:7.9至860.6
# 8. ISI-FWI系统的ISI指数:0.0至56.10
# 9. temp- 摄氏温度:2.2至33.30
# 10. RH-相对湿度(%):15.0至100
# 11。风-以km / h为单位的风速:0.40至9.40
# 12.雨量-外部雨量,单位为mm / m2:0.0到6.4
# 13.面积-森林的燃烧面积(以ha为单位):0.00到1090.84
# (此输出变量非常偏向0.0,因此使用对数变换)

def loadDataset(filename):
    with open(filename, 'r') as f:
        lines = csv.reader(f)
        data_set = list(lines)
    for i in range(len(data_set)):
        del(data_set[i][0])
    # 整理数据
    for i in range(len(data_set)):
        del(data_set[i][3])

    category = data_set[0]

    del(data_set[0])

    for i in range(len(data_set)):
        for j in range(len(data_set[0])):
            if j == 2:
                data_set[i][j] = str.capitalize(data_set[i][j])
                data_set[i][j] = list(calendar.month_abbr).index(data_set[i][j])
            data_set[i][j] = float(data_set[i][j])
            if j == 11:
                data_set[i][j] = log1p(data_set[i][j]+1)

    return data_set, category


def split_data(data):

    data_set = copy.deepcopy(data)

    data_mat = []
    label_mat = []
    for i in range(len(data_set)):
        label_mat.append(data_set[i][-1])
        del(data_set[i][-1])
        data_mat.append(data_set[i])

    print(data_mat)
    print(label_mat)

    return data_mat, label_mat


def mse(data_set, split_value, result):
    left_num = 0
    left_sum = 0
    left_list = []
    right_num = 0
    right_sum = 0
    rigth_list = []

    for i in range(len(data_set)):
        if data_set[i] <= split_value:
            left_num += 1
            left_sum += result[i]
            left_list.append(result[i])
        else:
            right_num += 1
            right_sum += result[i]
            rigth_list.append(result[i])

    c1 = left_sum/left_num
    c2 = right_sum/right_num

    m = 0
    for i in range(len(left_list)):
        m += pow((left_list[i]-c1), 2)
    for i in range(len(rigth_list)):
        m += pow((rigth_list[i]-c2), 2)

    return m


def get_best_split_value(data, result):

    data_set = set(data)
    data_set = list(data_set)
    data.sort()
    length = len(data_set)
    if length == 1:
        return float("Inf"), float("Inf")
    print(data_set)
    split_value = []

    for i in range(length-1):
        split_value.append((data_set[i+1] + data_set[i])/2)

    # if len(split_value) == 2:
    #     return (split_value[0]+split_value[1])/2, mse(data, (split_value[0]+split_value[1])/2, result)

    m = []

    for i in range(len(split_value)):
        m.append(mse(data, split_value[i], result))

    min_mse = 0

    for i in range(len(m)):
        if m[i] < m[min_mse]:
            min_mse = i

    print(m)

    return split_value[min_mse], m[min_mse]


def get_best_feature(data, category):
    length = len(category)-1

    data_set, result = split_data(data)

    feature_mse = []

    split_feature_value = []

    feature_values = []

    for i in range(length):
        feature_mse.append(0)
        split_feature_value.append(0)

        feature_values.append([])
        for j in range(len(data_set)):
            feature_values[i].append(data_set[j][i])

    for i in range(length):
         split_feature_value[i], feature_mse[i] = get_best_split_value(feature_values[i], result)

    min_f = 0
    for i in range(length):
        if feature_mse[i] < feature_mse[min_f]:
            min_f = i

    print(feature_mse)

    return min_f, split_feature_value[min_f]


class Node(object):
    def __init__(self, category, item):
        self.name = category
        self.elem = item
        self.lchild = None
        self.rchild = None


def leaf_value(data):
    sum = 0
    for i in range(len(data)):
        sum += data[i][-1]

    return sum/len(data)




def creat_tree(data, labels, feature_labels=[]):
# 结束情况
    if len(labels) == 1:
        return Node('result', leaf_value(data))

    if len(data) < 0.05*len(train_set):
        return Node('result', leaf_value(data))


    # 最优特征的标签
    best_feature_num, best_feature_value = get_best_feature(data, labels)

    feature_labels.append(labels[best_feature_num])

    node = Node(labels[best_feature_num], best_feature_value)

    ldata = []
    rdata = []

    for d in data:
        if d[best_feature_num] <= best_feature_value:
            del(d[best_feature_num])
            ldata.append(d)
        else:
            del(d[best_feature_num])
            rdata.append(d)

    labels2 = copy.deepcopy(labels)
    del(labels2[best_feature_num])

    tree = node
    tree.lchild = creat_tree(ldata, labels2, feature_labels)
    tree.rchild = creat_tree(rdata, labels2, feature_labels)

    return tree


def breadth_travel(tree):
    """广度遍历"""
    queue = [tree]
    while queue:
        cur_node = queue.pop(0)
        print(cur_node.name, end=" ")
        print(cur_node.elem, end=" ")
        if cur_node.lchild is not None:
            queue.append(cur_node.lchild)
        if cur_node.rchild is not None:
            queue.append(cur_node.rchild)
    print()


def prediction(t_tree, test, labels):
    result = []
    test_mat, x = split_data(test)
    for data in test_mat:
        l = copy.deepcopy(labels)
        tree = t_tree
        for i in range(len(labels)):
            if tree.name == "result":
                result.append(tree.elem)
                break
            j = 0
            while j:
                if tree.name == l[j]:
                    break
                j += 1

            if data[j] <= tree.elem:
                tree = tree.lchild
            else:
                tree = tree.rchild
            del(l[j])
            del(data[j])
    return result


def tree_to_dict(tree, tree_dict):
    if tree.lchild == None and tree.rchild == None:
        tree_dict[tree.name+str(tree.elem)] = str(tree.elem)
        return tree_dict[tree.name+str(tree.elem)]

    tree_dict[tree.name+str(tree.elem)] = {}

    if tree.lchild != None:
        tree_to_dict(tree.lchild, tree_dict[tree.name+str(tree.elem)])
    if tree.rchild != None:
        tree_to_dict(tree.rchild, tree_dict[tree.name+str(tree.elem)])

    return tree_dict


def plot_model(tree, name):
    g = Digraph("G", filename=name, format='png', strict=False)
    first_label = list(tree.keys())[0]
    g.node("0", first_label)
    _sub_plot(g, tree, "0")
    g.view()


root = "0"


def _sub_plot(g, tree, inc):
    global root

    first_label = list(tree.keys())[0]
    ts = tree[first_label]

    if type(ts).__name__ != 'dict':
        root = str(int(root) + 1)
        g.node(root, str(tree[first_label]))
        g.edge(inc, root, str(ts))
        return

    for i in ts.keys():
        if isinstance(tree[first_label][i], dict):
            root = str(int(root) + 1)
            g.node(root, list(tree[first_label][i].keys())[0])
            g.edge(inc, root, str(i))
            _sub_plot(g, tree[first_label][i], root)
        else:
            root = str(int(root) + 1)
            g.node(root, str(tree[first_label][i]))
            g.edge(inc, root, str(i))


if __name__ == "__main__":
    test_set, category = loadDataset('forestfires_test.csv')
    train_set, category = loadDataset('forestfires_train.csv')


    print(category)
    print(train_set)
    print(test_set)

    # a, b = get_best_feature(train_set, category)
    # print(a)
    # print(b)

    my_tree = creat_tree(train_set, category)

    breadth_travel(my_tree)

    result = prediction(my_tree, test_set, category)

    sme = 0
    for i in range(len(result)):
        sme += pow(abs(result[i]-test_set[i][-1]), 2)

    print(sqrt(sme/len(result)))

    tree_dict = {}

    tree_dict = tree_to_dict(my_tree, tree_dict)

    print(tree_dict)

    plot_model(tree_dict, "forestfires.gv")



九、剪枝

由于我自己写的后剪枝操作代码对于树没有任何修剪,这里就仅提供周志华《机器学习》中介绍的剪枝方法,不附带相关代码了。

from math import log
import operator
import pickle


def calcShannonEnt(dataSet):
    # 统计数据数量
    numEntries = len(dataSet)
    # 存储每个label出现次数
    label_counts = {}
    # 统计label出现次数
    for featVec in dataSet:
        current_label = featVec[-1]
        if current_label not in label_counts:  # 提取label信息
            label_counts[current_label] = 0  # 如果label未在dict中则加入
        label_counts[current_label] += 1  # label计数

    shannon_ent = 0  # 经验熵
    # 计算经验熵
    for key in label_counts:
        prob = float(label_counts[key]) / numEntries
        shannon_ent -= prob * log(prob, 2)
    return shannon_ent


def splitDataSet(data_set, axis, value):
    ret_dataset = []
    for feat_vec in data_set:
        if feat_vec[axis] == value:
            reduced_feat_vec = feat_vec[:axis]
            reduced_feat_vec.extend(feat_vec[axis + 1:])
            ret_dataset.append(reduced_feat_vec)
    return ret_dataset


def chooseBestFeatureToSplit(dataSet):
    # 特征数量
    num_features = len(dataSet[0]) - 1
    # 计算数据香农熵
    base_entropy = calcShannonEnt(dataSet)
    # 信息增益
    best_info_gain = 0.0
    # 最优特征索引值
    best_feature = -1
    # 遍历所有特征
    for i in range(num_features):
        # 获取dataset第i个特征
        feat_list = [exampel[i] for exampel in dataSet]
        # 创建set集合,元素不可重合
        unique_val = set(feat_list)
        # 经验条件熵
        new_entropy = 0.0
        # 计算信息增益
        for value in unique_val:
            # sub_dataset划分后的子集
            sub_dataset = splitDataSet(dataSet, i, value)
            # 计算子集的概率
            prob = len(sub_dataset) / float(len(dataSet))
            # 计算经验条件熵
            new_entropy += prob * calcShannonEnt(sub_dataset)
        # 信息增益
        info_gain = base_entropy - new_entropy
        # 打印每个特征的信息增益
        print("第%d个特征的信息增益为%.3f" % (i, info_gain))
        # 计算信息增益
        if info_gain > best_info_gain:
            # 更新信息增益
            best_info_gain = info_gain
            # 记录信息增益最大的特征的索引值
            best_feature = i
    print("最优索引值:" + str(best_feature))
    print()
    return best_feature


def majority_cnt(class_list):
    class_count = {}
    # 统计class_list中每个元素出现的次数
    for vote in class_list:
        if vote not in class_count:
            class_count[vote] = 0
            class_count[vote] += 1
        # 根据字典的值降序排列
        sorted_class_count = sorted(class_count.items(), key=operator.itemgetter(1), reverse=True)
    return sorted_class_count[0][0]


def creat_tree(dataSet, labels, featLabels):
    # 取分类标签(是否放贷:yes or no)
    class_list = [exampel[-1] for exampel in dataSet]
    # 如果类别完全相同则停止分类
    if class_list.count(class_list[0]) == len(class_list):
        return class_list[0]
    # 遍历完所有特征时返回出现次数最多的类标签
    if len(dataSet[0]) == 1:
        return majority_cnt(class_list)
    # 选择最优特征
    best_feature = chooseBestFeatureToSplit(dataSet)
    # 最优特征的标签
    best_feature_label = labels[best_feature]
    featLabels.append(best_feature_label)
    # 根据最优特征的标签生成树
    my_tree = {best_feature_label: {}}
    # 删除已使用标签
    del(labels[best_feature])
    # 得到训练集中所有最优特征的属性值
    feat_value = [exampel[best_feature] for exampel in dataSet]
    # 去掉重复属性值
    unique_vls = set(feat_value)
    for value in unique_vls:
        my_tree[best_feature_label][value] = creat_tree(splitDataSet(dataSet, best_feature, value), labels, featLabels)
    return my_tree


def get_num_leaves(my_tree):
    num_leaves = 0
    first_str = next(iter(my_tree))
    second_dict = my_tree[first_str]
    for key in second_dict.keys():
        if type(second_dict[key]).__name__ == 'dict':
            num_leaves += get_num_leaves(second_dict[key])
        else:
                num_leaves += 1
    return num_leaves


def get_tree_depth(my_tree):
    max_depth = 0       # 初始化决策树深度
    firsr_str = next(iter(my_tree))     # python3中myTree.keys()返回的是dict_keys,不在是list,所以不能使用myTree.keys()[0]的方法获取结点属性,可以使用list(myTree.keys())[0]
    second_dict = my_tree[firsr_str]    # 获取下一个字典
    for key in second_dict.keys():
        if type(second_dict[key]).__name__ == 'dict':     # 测试该结点是否为字典,如果不是字典,代表此结点为叶子结点
            this_depth = 1 + get_tree_depth(second_dict[key])
        else:
            this_depth = 1
        if this_depth > max_depth:
            max_depth = this_depth      # 更新层数
    return max_depth


def classify(input_tree, feat_labels, test_vec):
    # 获取决策树节点
    first_str = next(iter(input_tree))
    # 下一个字典
    second_dict = input_tree[first_str]
    feat_index = feat_labels.index(first_str)

    for key in second_dict.keys():
        if test_vec[feat_index] == key:
            if type(second_dict[key]).__name__ == 'dict':
                class_label = classify(second_dict[key], feat_labels, test_vec)
            else:
                class_label = second_dict[key]
    return class_label


def storeTree(input_tree, filename):
    # 存储树
    with open(filename, 'wb') as fw:
        pickle.dump(input_tree, fw)


def grabTree(filename):
    # 读取树
    fr = open(filename, 'rb')
    return pickle.load(fr)


if __name__ == "__main__":
    # 数据集
    dataSet = [[0, 0, 0, 0, 'no'],
               [0, 0, 0, 1, 'no'],
               [0, 1, 0, 1, 'yes'],
               [0, 1, 1, 0, 'yes'],
               [0, 0, 0, 0, 'no'],
               [1, 0, 0, 0, 'no'],
              # [1, 0, 0, 0, 'yes'],
               [1, 0, 0, 1, 'no'],
               [1, 1, 1, 1, 'yes'],
               [1, 0, 1, 2, 'yes'],
               [1, 0, 1, 2, 'yes'],
               [2, 0, 1, 2, 'yes'],
               [2, 0, 1, 1, 'yes'],
               [2, 1, 0, 1, 'yes'],
               [2, 1, 0, 2, 'yes'],
               [2, 0, 0, 0, 'no']]
    # 分类属性
    labels = ['年龄', '有工作', '有自己的房子', '信贷情况']

    print(dataSet)
    print()
    print(calcShannonEnt(dataSet))
    print()

    featLabels = []
    myTree = creat_tree(dataSet, labels, featLabels)
    print(myTree)
    print(get_tree_depth(myTree))
    print(get_num_leaves(myTree))

    #测试数据
    testVec = [0, 1, 1, 1]
    result = classify(myTree, featLabels, testVec)

    if result == 'yes':
        print('放贷')
    if result == 'no':
        print('不放贷')

    # 存储树
    storeTree(myTree,'classifierStorage.txt')

    # 读取树
    myTree2 = grabTree('classifierStorage.txt')
    print(myTree2)

    testVec2 = [1, 0]
    result2 = classify(myTree2, featLabels, testVec)
    if result2 == 'yes':
        print('放贷')
    if result2 == 'no':
        print('不放贷')
# 输出结果如下:
[[0, 0, 0, 0, 'no'], [0, 0, 0, 1, 'no'], [0, 1, 0, 1, 'yes'], [0, 1, 1, 0, 'yes'], [0, 0, 0, 0, 'no'], [1, 0, 0, 0, 'no'], [1, 0, 0, 1, 'no'], [1, 1, 1, 1, 'yes'], [1, 0, 1, 2, 'yes'], [1, 0, 1, 2, 'yes'], [2, 0, 1, 2, 'yes'], [2, 0, 1, 1, 'yes'], [2, 1, 0, 1, 'yes'], [2, 1, 0, 2, 'yes'], [2, 0, 0, 0, 'no']]

0.97095059445466860个特征的信息增益为0.0831个特征的信息增益为0.3242个特征的信息增益为0.4203个特征的信息增益为0.363
最优索引值:20个特征的信息增益为0.2521个特征的信息增益为0.9182个特征的信息增益为0.474
最优索引值:1

{'有自己的房子': {0: {'有工作': {0: 'no', 1: 'yes'}}, 1: 'yes'}}
2
3
放贷
{'有自己的房子': {0: {'有工作': {0: 'no', 1: 'yes'}}, 1: 'yes'}}
放贷
import csv
import operator
import copy
import numpy as np


# 0PassengerId:乘客的ID                               不重要
# 1Survived:乘客是否获救,Key:0=没获救,1=已获救
# 2Pclass:乘客船舱等级(1/2/3三个等级舱位)
# 3Name:乘客姓名                                       不重要
# 4Sex:性别
# 5Age:年龄
# 6SibSp:乘客在船上的兄弟姐妹/配偶数量
# 7Parch:乘客在船上的父母/孩子数量
# 8Ticket:船票号                                         不重要
# 9Fare:船票价
# 10Cabin:客舱号码                                        不重要
# 11Embarked:登船的港口                                   不重要



def loadDataset(filename):
    with open(filename, 'r') as f:
        lines = csv.reader(f)
        data_set = list(lines)
    if filename != 'titanic.csv':
        for i in range(len(data_set)):
            del(data_set[i][0])
    # 整理数据
    for i in range(len(data_set)):
        del(data_set[i][0])
        del(data_set[i][2])
        data_set[i][4] += data_set[i][5]
        del(data_set[i][5])
        del(data_set[i][5])
        del(data_set[i][6])
        del(data_set[i][-1])

    category = data_set[0]

    del (data_set[0])
    # 转换数据格式
    for data in data_set:
        data[0] = int(data[0])
        data[1] = int(data[1])
        if data[3] != '':
            data[3] = float(data[3])
        else:
            data[3] = None
        data[4] = float(data[4])
        data[5] = float(data[5])
    # 补全缺失值 转换记录方式 分类
    for data in data_set:
        if data[3] is None:
            data[3] = 28
        # male : 1, female : 0
        if data[2] == 'male':
            data[2] = 1
        else:
            data[2] = 0
        # age <25 为0, 25<=age<31为1,age>=31为2
        if data[3] < 60: # 但是测试得60分界准确率最高???!!!
            data[3] = 0
        else:
            data[3] = 1
        # sibsp&parcg以2为界限,小于为0,大于为1
        if data[4] < 2:
            data[4] = 0
        else:
            data[4] = 1
        # fare以64为界限
        if data[-1] < 64:
            data[-1] = 0
        else:
            data[-1] = 1
    return data_set, category


def gini(data, i):

    num = len(data)
    label_counts = [0, 0, 0, 0]

    p_count = [0, 0, 0, 0]

    gini_count = [0, 0, 0, 0]

    for d in data:
        label_counts[d[i]] += 1

    for l in range(len(label_counts)):
        for d in data:
            if label_counts[l] != 0 and d[0] == 1 and d[i] == l:
                p_count[l] += 1

    print(label_counts)
    print(p_count)

    for l in range(len(label_counts)):
        if label_counts[l] != 0:
            gini_count[l] = 2*(p_count[l]/label_counts[l])*(1 - p_count[l]/label_counts[l])

    gini_p = 0
    for l in range(len(gini_count)):
        gini_p += (label_counts[l]/num)*gini_count[l]

    print(gini_p)

    return gini_p


def get_best_feature(data, category):
    if len(category) == 2:
        return 1, category[1]

    feature_num = len(category) - 1
    data_num = len(data)

    feature_gini = []

    for i in range(1, feature_num+1):
        feature_gini.append(gini(data, i))

    min = 0

    for i in range(len(feature_gini)):
        if feature_gini[i] < feature_gini[min]:
            min = i

    print(feature_gini)
    print(category)
    print(min+1)
    print(category[min+1])

    return min+1, category[min + 1]


def majority_cnt(class_list):
    class_count = {}
    # 统计class_list中每个元素出现的次数
    for vote in class_list:
        if vote not in class_count:
            class_count[vote] = 0
        class_count[vote] += 1
        # 根据字典的值降序排列
        sorted_class_count = sorted(class_count.items(), key=operator.itemgetter(1), reverse=True)
    return sorted_class_count[0][0]


class Node(object):
    def __init__(self, item):
        self.name = item
        self.lchild = None
        self.rchild = None


def creat_tree(data, labels, feature_labels=[]):
# 三种结束情况
    # 取分类标签(survivor or death)
    class_list = [exampel[0] for exampel in data]

    if class_list == []:
        return Node(0)
    # 如果类别完全相同则停止分类
    if class_list.count(class_list[0]) == len(class_list):
        return Node(class_list[0])
    # 遍历完所有特征时返回出现次数最多的类标签
    if len(data[0]) == 1:
        return Node(majority_cnt(class_list))

    # 最优特征的标签
    best_feature_num, best_feature_label = get_best_feature(data, labels)

    feature_labels.append(best_feature_label)

    node = Node(best_feature_label)

    ldata = []
    rdata = []

    for d in data:
        if d[best_feature_num] == 1:
            del(d[best_feature_num])
            ldata.append(d)
        else:
            del(d[best_feature_num])
            rdata.append(d)

    labels2 = copy.deepcopy(labels)
    del(labels2[best_feature_num])

    tree = node
    tree.lchild = creat_tree(ldata, labels2, feature_labels)
    tree.rchild = creat_tree(rdata, labels2, feature_labels)

    return tree


def breadth_travel(tree):
    """广度遍历"""
    queue = [tree]
    while queue:
        cur_node = queue.pop(0)
        print(cur_node.name, end=" ")
        if cur_node.lchild is not None:
            queue.append(cur_node.lchild)
        if cur_node.rchild is not None:
            queue.append(cur_node.rchild)
    print()

def prediction(t_tree, test, labels):
    result = []
    for data in test:
        l = copy.deepcopy(labels)
        tree = t_tree
        for i in range(len(labels)):
            if tree.name == 1 or tree.name == 0:
                result.append(tree.name)
                break
            if len(data) == 1:
                result.append(0)
                break
            j = 1
            while j < len(data)-1:
                if tree.name == l[j]:
                    break
                j += 1

            if data[j] == 1:
                tree = tree.lchild
            else:
                tree = tree.rchild
            del(l[j])
            del(data[j])
    return result


if __name__ == "__main__":

    test_set, category = loadDataset('data/data43004/titanic_test.csv')
    train_set, category = loadDataset('data/data43004/titanic_train.csv')

    print(category)
    print(train_set)
    print()
    print(test_set)


    my_tree = creat_tree(train_set, category)
    print(my_tree)
    breadth_travel(my_tree)
    print(category)
    print(test_set)

    test = copy.deepcopy(test_set)

    result = prediction(my_tree, test_set, category)
    print(len(test_set))

    print(result)

    counts = 0

    for i in range(len(test_set)):
        if test_set[i][0] == result[i]:
            counts += 1

    print(counts)
    accurancy = counts/len(test_set)
    print(accurancy)

import csv
import copy
import calendar
from math import log1p
from math import sqrt
from graphviz import Digraph



# 1. Montesinho公园地图内的X-x轴空间坐标:1到9
# 2. Montesinho公园地图内的 Y-y轴空间坐标:2到9
# 3.每年的月份-月:“ jan”到“ dec'
# 4.每天-星期几:从“周一”到“星期日”
# 5.FFMC
# - FWI系统中的FFMC指数:18.7至96.20 6. DMC-FWI系统中的DMC指数:1.1至291.3 7. DC- FWI系统的DC指数:7.9至860.6
# 8. ISI-FWI系统的ISI指数:0.0至56.10
# 9. temp- 摄氏温度:2.2至33.30
# 10. RH-相对湿度(%):15.0至100
# 11。风-以km / h为单位的风速:0.40至9.40
# 12.雨量-外部雨量,单位为mm / m2:0.0到6.4
# 13.面积-森林的燃烧面积(以ha为单位):0.00到1090.84
# (此输出变量非常偏向0.0,因此使用对数变换)

def loadDataset(filename):
    with open(filename, 'r') as f:
        lines = csv.reader(f)
        data_set = list(lines)
    for i in range(len(data_set)):
        del(data_set[i][0])
    # 整理数据
    for i in range(len(data_set)):
        del(data_set[i][3])

    category = data_set[0]

    del(data_set[0])

    for i in range(len(data_set)):
        for j in range(len(data_set[0])):
            if j == 2:
                data_set[i][j] = str.capitalize(data_set[i][j])
                data_set[i][j] = list(calendar.month_abbr).index(data_set[i][j])
            data_set[i][j] = float(data_set[i][j])
            if j == 11:
                data_set[i][j] = log1p(data_set[i][j]+1)

    return data_set, category


def split_data(data):

    data_set = copy.deepcopy(data)

    data_mat = []
    label_mat = []
    for i in range(len(data_set)):
        label_mat.append(data_set[i][-1])
        del(data_set[i][-1])
        data_mat.append(data_set[i])

    print(data_mat)
    print(label_mat)

    return data_mat, label_mat


def mse(data_set, split_value, result):
    left_num = 0
    left_sum = 0
    left_list = []
    right_num = 0
    right_sum = 0
    rigth_list = []

    for i in range(len(data_set)):
        if data_set[i] <= split_value:
            left_num += 1
            left_sum += result[i]
            left_list.append(result[i])
        else:
            right_num += 1
            right_sum += result[i]
            rigth_list.append(result[i])

    c1 = left_sum/left_num
    c2 = right_sum/right_num

    m = 0
    for i in range(len(left_list)):
        m += pow((left_list[i]-c1), 2)
    for i in range(len(rigth_list)):
        m += pow((rigth_list[i]-c2), 2)

    return m


def get_best_split_value(data, result):

    data_set = set(data)
    data_set = list(data_set)
    data.sort()
    length = len(data_set)
    if length == 1:
        return float("Inf"), float("Inf")
    print(data_set)
    split_value = []

    for i in range(length-1):
        split_value.append((data_set[i+1] + data_set[i])/2)

    # if len(split_value) == 2:
    #     return (split_value[0]+split_value[1])/2, mse(data, (split_value[0]+split_value[1])/2, result)

    m = []

    for i in range(len(split_value)):
        m.append(mse(data, split_value[i], result))

    min_mse = 0

    for i in range(len(m)):
        if m[i] < m[min_mse]:
            min_mse = i

    print(m)

    return split_value[min_mse], m[min_mse]


def get_best_feature(data, category):
    length = len(category)-1

    data_set, result = split_data(data)

    feature_mse = []

    split_feature_value = []

    feature_values = []

    for i in range(length):
        feature_mse.append(0)
        split_feature_value.append(0)

        feature_values.append([])
        for j in range(len(data_set)):
            feature_values[i].append(data_set[j][i])

    for i in range(length):
         split_feature_value[i], feature_mse[i] = get_best_split_value(feature_values[i], result)

    min_f = 0
    for i in range(length):
        if feature_mse[i] < feature_mse[min_f]:
            min_f = i

    print(feature_mse)

    return min_f, split_feature_value[min_f]


class Node(object):
    def __init__(self, category, item):
        self.name = category
        self.elem = item
        self.lchild = None
        self.rchild = None


def leaf_value(data):
    sum = 0
    for i in range(len(data)):
        sum += data[i][-1]

    return sum/len(data)




def creat_tree(data, labels, feature_labels=[]):
# 结束情况
    if len(labels) == 1:
        return Node('result', leaf_value(data))

    if len(data) < 0.05*len(train_set):
        return Node('result', leaf_value(data))


    # 最优特征的标签
    best_feature_num, best_feature_value = get_best_feature(data, labels)

    feature_labels.append(labels[best_feature_num])

    node = Node(labels[best_feature_num], best_feature_value)

    ldata = []
    rdata = []

    for d in data:
        if d[best_feature_num] <= best_feature_value:
            del(d[best_feature_num])
            ldata.append(d)
        else:
            del(d[best_feature_num])
            rdata.append(d)

    labels2 = copy.deepcopy(labels)
    del(labels2[best_feature_num])

    tree = node
    tree.lchild = creat_tree(ldata, labels2, feature_labels)
    tree.rchild = creat_tree(rdata, labels2, feature_labels)

    return tree


def breadth_travel(tree):
    """广度遍历"""
    queue = [tree]
    while queue:
        cur_node = queue.pop(0)
        print(cur_node.name, end=" ")
        print(cur_node.elem, end=" ")
        if cur_node.lchild is not None:
            queue.append(cur_node.lchild)
        if cur_node.rchild is not None:
            queue.append(cur_node.rchild)
    print()


def prediction(t_tree, test, labels):
    result = []
    test_mat, x = split_data(test)
    for data in test_mat:
        l = copy.deepcopy(labels)
        tree = t_tree
        for i in range(len(labels)):
            if tree.name == "result":
                result.append(tree.elem)
                break
            j = 0
            while j:
                if tree.name == l[j]:
                    break
                j += 1

            if data[j] <= tree.elem:
                tree = tree.lchild
            else:
                tree = tree.rchild
            del(l[j])
            del(data[j])
    return result


def tree_to_dict(tree, tree_dict):
    if tree.lchild == None and tree.rchild == None:
        tree_dict[tree.name+str(tree.elem)] = str(tree.elem)
        return tree_dict[tree.name+str(tree.elem)]

    tree_dict[tree.name+str(tree.elem)] = {}

    if tree.lchild != None:
        tree_to_dict(tree.lchild, tree_dict[tree.name+str(tree.elem)])
    if tree.rchild != None:
        tree_to_dict(tree.rchild, tree_dict[tree.name+str(tree.elem)])

    return tree_dict


def plot_model(tree, name):
    g = Digraph("G", filename=name, format='png', strict=False)
    first_label = list(tree.keys())[0]
    g.node("0", first_label)
    _sub_plot(g, tree, "0")
    g.view()


root = "0"


def _sub_plot(g, tree, inc):
    global root

    first_label = list(tree.keys())[0]
    ts = tree[first_label]

    if type(ts).__name__ != 'dict':
        root = str(int(root) + 1)
        g.node(root, str(tree[first_label]))
        g.edge(inc, root, str(ts))
        return

    for i in ts.keys():
        if isinstance(tree[first_label][i], dict):
            root = str(int(root) + 1)
            g.node(root, list(tree[first_label][i].keys())[0])
            g.edge(inc, root, str(i))
            _sub_plot(g, tree[first_label][i], root)
        else:
            root = str(int(root) + 1)
            g.node(root, str(tree[first_label][i]))
            g.edge(inc, root, str(i))


if __name__ == "__main__":
    test_set, category = loadDataset('data/data43017/test.csv')
    train_set, category = loadDataset('data/data43017/train.csv')


    print(category)
    print(train_set)
    print(test_set)

    # a, b = get_best_feature(train_set, category)
    # print(a)
    # print(b)

    my_tree = creat_tree(train_set, category)

    breadth_travel(my_tree)

    result = prediction(my_tree, test_set, category)

    sme = 0
    for i in range(len(result)):
        sme += pow(abs(result[i]-test_set[i][-1]), 2)

    print(sqrt(sme/len(result)))

    tree_dict = {}

    tree_dict = tree_to_dict(my_tree, tree_dict)

    print(tree_dict)

    plot_model(tree_dict, "forestfires.gv")




http://www.kler.cn/a/3711.html

相关文章:

  • 机器学习-核函数(Kernel Function)
  • kafka学习笔记7 性能测试 —— 筑梦之路
  • 人工智能领域单词:英文解释
  • 通过内核模块按fd强制tcp的quickack方法
  • nginx实现TCP反向代理
  • JavaFx + SpringBoot 快速开始脚手架
  • Mac和Windows如何控制node版本
  • YOLOv7训练自己的数据集(手把手教你)
  • C++STL详解(八)-- set,map,multiset,multimap的介绍与使用
  • (5)惯性推算失控保护
  • 误删文件夹但是回收站没有找到怎么恢复
  • JVM类加载机制
  • linux用户添加用户组与目录切换用户组的操作记录
  • LeetCode:202. 快乐数
  • 进程间通信【Linux】
  • 基于微信小程序+爬虫制作一个表情包小程序
  • 【数据结构】实现二叉树的基本操作
  • “中国李宁“,能否救李宁?
  • Python满屏表白代码
  • 到了这个年纪,就应该阅读Spring源码了,源码阅读指南-编译加运行
  • 如果大学能重来,我绝对能吊打90%的大学生,早知道这方法就好了
  • 【蓝桥杯_练习】
  • STA:时序检查 - reg2output型
  • Java语言-----封装、继承、抽象、多态、接口
  • Idea+maven+spring-cloud项目搭建系列--11 整合dubbo
  • 肠道菌群对药物,重金属,污染物,膳食化合物的代谢和健康效应