当前位置: 首页 > article >正文

【2024APMCM亚太杯A题】详细解题思路

A题 复杂场景下的水下图像增强研究

  • 解题思路
    • 问题一
      • 图像统计分析技术
        • 一、检测 偏色 的技术
        • 二、检测 弱光 的技术
        • 三、检测 模糊 的技术
    • 聚类算法
  • 问题二
  • 问题三
  • 问题四
  • 完整论文与代码

解题思路

在这里插入图片描述

问题一

问题 1:请使用类似上文提到的图像统计分析技术,对附件 1 提供的水下图像进行多角度分析。将附件 1 提供的图像分为偏色、弱光、模糊三类,并在“Answer.xls”附件中三个位置填写文件名,并说明这样分类的原因
在这里插入图片描述

图像统计分析技术

除了文中提到的直方图和边缘算子,以下是一些常见的图像统计分析技术,这些技术可用于对水下图像或其他图像进行深入分析:

  • 灰度共生矩阵(GLCM)
    用于分析图像的纹理特征,通过统计像素灰度值之间的空间关系提取特征,例如对比度、能量、熵和相关性。
  • 频域分析
    通过傅里叶变换将图像从空间域转换到频域,分析图像的频率分布,例如低频区域用于检测整体亮度分布,高频区域用于检测边缘和纹理。
  • 颜色空间转换与分析
    将图像从RGB空间转换到其他颜色空间(如HSV、Lab),分析亮度、饱和度和色调的分布,用于处理水下光照和色彩失真的问题。
  • 梯度计算
    利用梯度算子(如Sobel、Prewitt、Scharr)计算图像的梯度强度和方向,以检测边缘清晰度和形状特征。
  • 熵计算
    图像熵用于量化图像中信息的复杂度。熵越高,表示图像信息越丰富,随机性越高。
  • 小波变换
    通过小波分解图像,分析其不同尺度的细节和纹理特征,用于检测图像的细节信息和去噪处理。
  • 边缘分割和轮廓分析
    应用Canny、Laplacian等边缘检测算子,通过统计物体轮廓的长度、面积或形状,获取图像中目标的结构信息。
  • 光流分析
    用于动态图像或视频中,统计像素的运动信息(如方向和速度),评估水下物体移动的轨迹。
  • 直方图均衡化与统计
    分析图像亮度值分布,检查亮度均匀性并评估对比度调整的效果。
  • 图像特征点统计
    通过特征点检测算法(如SIFT、SURF、ORB)统计图像中的关键点密度和分布,用于评估图像质量或检测关键区域。
  • 噪声分布分析
    分析图像中的噪声类型(高斯噪声、椒盐噪声等)及其强度,确定去噪处理的必要性和方法。
  • 形态学分析
    使用数学形态学操作(如腐蚀、膨胀、开运算和闭运算)分析图像结构和目标物体的形态特征。
  • 亮度对比分析
    统计图像中明暗区域的分布比例,分析亮度对比度是否适合人眼感知。
一、检测 偏色 的技术

1.颜色直方图分析
统计不同通道(R、G、B或HSV空间中的H通道)的颜色分布,检查颜色是否集中在某一特定通道上。例如,偏蓝或偏绿色可能是水下图像常见的偏色情况。
2.颜色空间转换与分析
转换到Lab或YUV颜色空间,分析亮度(L通道)和色彩信息(a、b通道)的偏移程度。Lab颜色空间中的a、b分量可以直观反映色彩失衡。
3.白平衡检测
计算图像中灰度均衡性是否异常,例如通过灰度世界假设(Gray World Assumption)检测整体色彩是否失衡。
4.颜色饱和度检测
在HSV颜色空间中分析S通道分布。如果S值异常集中或过低,可能暗示偏色情况。

二、检测 弱光 的技术

1.亮度直方图分析
分析图像灰度分布或亮度分布(Y通道、L通道或HSV的V通道)。当亮度值集中在低范围时,可以判定图像为弱光。
2.对比度测量
使用亮度对比度公式(如对比度=亮度最大值与最小值的差值)检测整体对比度。弱光图像通常对比度较低。
3.熵计算
弱光图像的信息熵较低,因为暗区像素分布单一,图像信息不丰富。
4.伽马分布分析
检测亮度分布曲线是否偏向低值区域,低伽马值可能表明弱光问题。
5.动态范围分析
检查图像的动态范围(即亮度值从最低到最高的跨度)。弱光图像动态范围通常较窄。

三、检测 模糊 的技术

1.梯度分布统计
使用梯度算子(如Sobel、Prewitt)统计图像中梯度值的分布情况。模糊图像通常梯度强度较低,边缘模糊。
2.拉普拉斯方差分析
计算图像的拉普拉斯算子方差。如果方差值过低,说明图像的清晰度较差。
3.频域分析
对图像进行傅里叶变换,分析高频分量的分布。模糊图像高频成分衰减显著。
4.边缘检测结果统计
使用Canny或其他边缘检测算法统计边缘数量和清晰度。如果边缘数量明显减少或边缘较软,则可能是模糊图像。
5.对比度梯度分析(Contrast Gradient Analysis)
模糊图像的局部对比度梯度变化较小,清晰度低。
6.视觉感知清晰度模型(VSI)
通过视觉感知清晰度指数(Visual Saliency Index)分析图像模糊程度,模拟人眼感知。

聚类算法

将所有特征进行值计算出来,进行聚类算法。
在这里插入图片描述
在这里插入图片描述

问题二

基于问题 1 中提出的退化类型,利用问题中提供的水下成像模型,构建附有图像的水下场景图像退化模型。分析不同场景 [1] 拍摄的水下图像的退化原因(包括但不限于偏色、弱光等)。分析这些退化模型的相同点或不同点(例如,从颜色、光照、清晰度等角度进行分类)。

  1. 偏色
    偏色主要由水对不同波长光的吸收和散射导致。由于水对红光吸收更强、对蓝光吸收较弱,深水区域通常会出现偏蓝或偏绿色现象。
    原因分析:
    水深:光吸收随着水深增加,红光消失,绿光和蓝光主导。
    水体成分:悬浮颗粒和有机物会改变光的散射特性。
    环境光变化:水下环境光随光源类型、光照强度和方向变化。
  2. 弱光
    弱光由环境光随深度衰减和光散射引起,导致整体亮度降低。
    原因分析:
    光照强度不足:在深水或阴影区域,光线衰减较快。
    后向散射分量:增加了散射光线,导致环境光的有效亮度降低。
    光透射率变化:水体浑浊度降低了光传递到目标的能力。
  3. 模糊
    模糊通常是由前向散射引起的。光线被悬浮颗粒散射后进入成像系统,形成模糊的视觉效果。
    原因分析:
    悬浮颗粒的浓度:颗粒密度增加会导致更多的前向散射。
    物体与相机的距离:距离越远,散射效应越显著,导致图像模糊。
    在这里插入图片描述
    具体退化类型的影响可以通过调整参数进行模拟:
    1.偏色:在 J(x)中增加颜色吸收模型(对 R/G/B 三通道的光强分别进行非线性衰减)。
    在这里插入图片描述

2.弱光:降低环境光 B 的强度,同时调整透射率 t(x) 使整体亮度衰减。
弱光表现为整体亮度降低,常由环境光衰减、后向散射等引起。弱光退化可以通过调整环境光强度 B 和透射率 t(x) 来模拟。
在这里插入图片描述
3.模糊:加入基于前向散射的点扩散函数(PSF),模拟悬浮颗粒散射导致的模糊效果。
在这里插入图片描述

问题三

问题 3:基于问题 2 中建立的水下场景图像退化模型,提出针对单一场景(如偏色、模糊、弱光)量身定制的水下图像增强方法,并使用附件中提供的图像数据验证所提出的增强方法。将附件 2 中的测试图像的增强结果及其对应的评价指标纳入论文中,计算并呈现输出图像的 PSNR、UCIQE、UIQM 等评价指标,并填入“Answer.xls”中提供的附件 1 结果表格中。

增强方法:基于颜色校正与光照补偿的多阶段方法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
偏色校正:

  • 使用光吸收补偿模型恢复不同波长的光信息。
  • 动态白平衡增强整体颜色均衡性。
    亮度补偿:
  • CLAHE 和伽马校正提高暗区域的亮度和对比度。
    视觉优化:
  • 高斯滤波器和 Retinex 进一步平滑颜色过渡,并增强细节。

问题四

现有的水下图像增强模型在不同场景下的建模适应性存在差异。请结合上述问题和附件中提供的图像,提出一种针对复杂场景的水下图像增强模型(例如非物理模型,可参考文献[2]-[5]),该模型应能够增强多种复杂场景下的水下图像退化问题。将附件2中测试图像的增强结果及其对应的评价指标纳入论文展示,计算并输出输出图像的PSNR、UCIQE、UIQM等评价指标,并填入“Answer.xls”中附件2结果表格中。

提出一种联合优化网络 (Joint Optimization Network, JONet),包括以下模块:
1.多通道特征提取模块(MCFE)
用于捕获不同通道的颜色、纹理和亮度特征。
2.全局与局部增强模块(GLE-LFE)
用于处理光照不均和局部模糊问题。
3.多任务损失函数(MTL)
联合优化图像的颜色校正、对比度增强和清晰度。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 训练数据:使用公开水下图像数据集(如 UIEB 数据集)和生成的合成退化图像。
  • 训练过程:
  • 数据增强:包括模拟偏色、弱光和模糊退化。
  • 优化器:使用 Adam 优化器,学习率设置为 10^{-4}。
  • 推理过程:输入退化图像,直接输出增强图像 I′(x)。
    在这里插入图片描述

完整论文与代码

完成解题思路,以及完整论文代码请看下方~


http://www.kler.cn/a/404194.html

相关文章:

  • GitLab|GitLab报错:PG::ConnectionBad: could not connect to server...
  • ant-design-vue中table组件多列排序
  • 【FFmpeg】FFmpeg 内存结构 ③ ( AVPacket 函数简介 | av_packet_ref 函数 | av_packet_clone 函数 )
  • 库卡机器人维护需要注意哪些事项
  • 2024信创数据库TOP30之达梦DM8
  • 39页PDF | 毕马威_数据资产运营白皮书(限免下载)
  • 三、计算机视觉_06YOLO基础知识
  • 深入理解Spring(二)
  • 子矩阵的和(矩阵前缀和)
  • SpringBootTest启动时出现循环依赖问题
  • 机器学习问题之一:协变量偏移(Covariate Shift)
  • 嵌入式Linux移植cJSON库
  • 基于 RBF 神经网络辨识的单神经元 PID 模型参考自适应控制
  • fca考试
  • 每天五分钟深度学习框架pytorch:神经网络模型的参数初始化操作
  • (二)Ubuntu22.04+Stable-Diffusion-webui AI绘画 中英双语插件安装
  • 括号匹配算法
  • Kafka-创建topic源码
  • Flink的Standalone集群模式安装部署
  • 【机器学习chp6】对数几率回归
  • 【AI】人工智能报告解读——中国人工智能的发展
  • #systemverilog# 关于 randomize(a) 却报 b 失败的疑问
  • pytorch经典训练流程
  • 【运维自动化-作业平台】如何使用全局变量之数组类型?
  • C#桌面应用制作计算器进阶版01
  • 空间与单细胞转录组学的整合定位肾损伤中上皮细胞与免疫细胞的相互作用