opencv项目--文档扫描
scan_file.py
import numpy as np
import argparse
import cv2
# 设置参数
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="Path to the image to be scanned")
args = vars(ap.parse_args())
print(args)
# 绘图展示
def cv_show(name, img):
cv2.imshow(name, img)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 读取图片数据
image = cv2.imread(args['image'])
# cv_show('image',image)
print(image.shape)
# 将要对图像进行大小变化,先保存一下变化率
ratio = image.shape[0] / 500.0
# 获得原始图像
orig = image.copy()
# 按比例变化图像大小
def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
dim = None
(h, w) = image.shape[:2]
if width is None and height is None:
return image
if width is None:
r = height / float(h)
dim = (int(w * r), height)
print('width is None', dim)
else:
r = width / float(w)
dim = (width, int(h * r))
print('height is None', dim)
resized = cv2.resize(image, dim, interpolation=inter)
return resized
image = resize(orig, height=500)
print(image.shape)
# cv_show('image',image)
# 对图像进行预处理操作
# 转灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv_show('gray', gray)
# 去噪操作
gray = cv2.GaussianBlur(gray, (5, 5), 0)
# cv_show('gray',gray)
# 进行Canny边缘检测
edged = cv2.Canny(gray, 75, 200)
print(edged.shape)
# cv_show('Canny_edged',edged)
# 展示预处理结果
print("STEP 1: 边缘检测")
cv_show('image', image)
cv_show('Canny_edged', edged)
# 再进行轮廓检测
# RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中
# CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分。
cnts, hierarchy = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
draw_img = image.copy()
res = cv2.drawContours(draw_img, cnts, -1, (0, 0, 255), 2)
cv_show('find_Cnts', draw_img)
# 根据轮廓面积排序选择最大的五个轮廓
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5]
draw_img = image.copy()
res = cv2.drawContours(draw_img, cnts, -1, (0, 0, 255), 2)
cv_show('find_Cnts', res)
# 遍历这五个最大的轮廓
for c in cnts:
# 计算轮廓近似
# 由于有些轮廓比较粗糙或者太详细,可以改变近似算法的阈值来调整
peri = cv2.arcLength(c, True)
# c:输入的点集
# epsilon:从原始轮廓到近似轮廓的最大距离,它是一个准确度参数
# True : 表示封闭
approx = cv2.approxPolyDP(c, 0.02 * peri, True)
# 有4个点的时候就拿出来
if len(approx) == 4:
screenCnt = approx
break
# 展示结果
print("STEP 2: 获取轮廓")
cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)
cv_show('Get_Cnts', image)
# 透视变换
def order_points(pts):
# 一共4个坐标点
rect = np.zeros((4, 2), dtype="float32")
# 按顺序找到对应坐标0123分别是 左上,右上,右下,左下
# 计算左上,右下
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
# 计算右上和左下
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def four_point_transform(image, pts):
# 获取输入坐标点
rect = order_points(pts)
(tl, tr, br, bl) = rect
# 计算输入的w和h值
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
# 变换后对应坐标位置
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype="float32")
# 计算变换矩阵
# 只能是矩形形状较好
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
# 返回变换后结果
return warped
warped =four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)
# cv_show("warped",warped)
# 二值处理
warped = cv2.cvtColor(warped,cv2.COLOR_BGR2GRAY)
ref = cv2.threshold(warped,100,255,cv2.THRESH_BINARY)[1]
# cv_show('Binary_warped',warped)
# 保存图像
cv2.imwrite('scan.jpg',ref)
# 展示结果
print("STEP 3: 变换")
cv_show("Original", resize(orig, height = 650))
cv_show("Scanned", resize(ref, height = 650))
test.py
# https://digi.bib.uni-mannheim.de/tesseract/
# 配置环境变量如E:\Program Files (x86)\Tesseract-OCR
# -v进行测试
# tesseract XXX.png 得到结果
# pip install pytesseract
# anaconda lib site-packges pytesseract pytesseract.py
# tesseract_cmd 修改为绝对路径即可
from PIL import Image
import pytesseract
import cv2
import os
preprocess = 'blur' #thresh
image = cv2.imread('scan.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
if preprocess == "thresh":
gray = cv2.threshold(gray, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
if preprocess == "blur":
gray = cv2.medianBlur(gray, 3)
# filename = "{}.png".format(os.getpid())
filename = "test.png"
cv2.imwrite(filename, gray)
text = pytesseract.image_to_string(Image.open(filename))
print(text)
os.remove(filename)
cv2.imshow("Image", image)
cv2.imshow("Output", gray)
cv2.waitKey(0)
记得安装谷歌的tesseract-ocr-setup-4.00.00dev.exe