当前位置: 首页 > article >正文

【Deepstream学习】 TX1模块中C++ Sample application 2详细测试讲解

        大家好,我是虎哥,使用NVIDIA Jeston TX1 也有很长一段时间了,由于这是基本停产的一个模块,其实自己也担心有很多官方的demo无法适配跑起来了,所以花了点时间,进一步研究发挥其GPU性能,使用各种硬件协处理器来加速。今天周末,开始续测试一下DeepStream自带的C++DEMO,开始入门学习DeepStream的使用,讲通过详细分享官方自带的5个典型例子,来完成入门学习,分享给大家,也是自己做个笔记总结。

先交代一下我自己的测试环境,硬件好事TX1+EHub_tx1_tx2_E100载板的环境, 关于测试硬件EHub_tx1_tx2_E100载板请查看:EdgeBox_EHub_tx1_tx2_E100 开发板评测_机器人虎哥的博客-CSDN博客。系统装ubuntu 18.04 的环境。安装了英伟达配套的所有cuda的套件库。

目录

0、C/C++ Sample Apps Source Details

参考资料

1、Sample test application 2

1.1 进入目录,找到代码:

1.2 按照指导编译文件

1.3 运行测试

1.4 报错尝试解决

1.5 尝试输入不同的场景视频

0、C/C++ Sample Apps Source Details

官网入口:https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_C_Sample_Apps.html

DeepStream SDK 包含插件、库、应用程序和源代码的存档。对于Debian安装(在Jetson或dGPU上)和SDK管理器安装,sources目录位于/opt/nvidia/deepstream/deepstream-6.2 sources。对于tar包,源文件位于提取的deepstream包中。DeepStream Python绑定和示例应用程序作为单独的包提供。有关详细信息,请参阅GitHub - NVIDIA-AI-IOT/deepstream_python_apps: DeepStream SDK Python bindings and sample applications.

使用Graph Composer创建的DeepStream图列在参考图部分。有关详细信息,请参见Graph Composer简介。

Reference test applicationPath inside sources directoryDescription
Sample test application 1apps/sample_apps/deepstream-test1Sample of how to use DeepStream elements for a single H.264 stream: filesrc → decode → nvstreammux → nvinfer or nvinferserver (primary detector) → nvdsosd → renderer. This app uses resnet10.caffemodel for detection.
Sample test application 2apps/sample_apps/deepstream-test2Sample of how to use DeepStream elements for a single H.264 stream: filesrc → decode → nvstreammux → nvinfer or nvinferserver (primary detector) → nvtracker → nvinfer or nvinferserver (secondary classifier) → nvdsosd → renderer. This app uses resnet10.caffemodel for detection and 3 classifier models (i.e., Car Color, Make and Model).
Sample test application 3apps/sample_apps/deepstream-test3Builds on deepstream-test1 (simple test application 1) to demonstrate how to:Use multiple sources in the pipeline.Use a uridecodebin to accept any type of input (e.g. RTSP/File), any GStreamer supported container format, and any codec.Configure Gst-nvstreammux to generate a batch of frames and infer on it for better resource utilization.Extract the stream metadata, which contains useful information about the frames in the batched buffer.This app uses resnet10.caffemodel for detection.
Sample test application 4apps/sample_apps/­deepstream-test4Builds on deepstream-test1 for a single H.264 stream: filesrc, decode, nvstreammux, nvinfer or nvinferserver, nvdsosd, renderer to demonstrate how to:Use the Gst-nvmsgconv and Gst-nvmsgbroker plugins in the pipeline.Create NVDS_META_EVENT_MSG type metadata and attach it to the buffer.Use NVDS_META_EVENT_MSG for different types of objects, e.g. vehicle and person.Implement “copy” and “free” functions for use if metadata is extended through the extMsg field.This app uses resnet10.caffemodel for detection.
Sample test application 5apps/sample_apps/­deepstream-test5Builds on top of deepstream-app. Demonstrates:Use of Gst-nvmsgconv and Gst-nvmsgbroker plugins in the pipeline for multistream.How to configure Gst-nvmsgbroker plugin from the config file as a sink plugin (for KAFKA, Azure, etc.).How to handle the RTCP sender reports from RTSP servers or cameras and translate the Gst Buffer PTS to a UTC timestamp.For more details refer the RTCP Sender Report callback function test5_rtcp_sender_report_callback() registration and usage in deepstream_test5_app_main.c. GStreamer callback registration with rtpmanager element’s “handle-sync” signal is documented in apps-common/src/deepstream_source_bin.c.This app uses resnet10.caffemodel for detection.

接下来的时间,我们就通过系统学习这5个示例程序。

  • test1: DeepStream的Hello World。介绍如何基于多种DeepStream 插件来构建一个Gstream 管道。这个样例中输入的是一个视频文件,经过解码、批处理、目标检测,并将检测信息显示在屏幕中。

  • test2: 在test1的基础上,将二级网络级联到一级网络。图中我们也能看到,在目标检测之后多了一个图像分类的模块。

  • test3: 在test1的基础上,如何实现多数据源。比如同时接入4路视频,实现对4路视频数据的同时推理。

  • test4: 在test1的基础上,展示如何使用message broker插件创建物联网服务。

参考资料

DeepStream SDK开发指南:NVIDIA DeepStream SDK Developer Guide — DeepStream 6.2 Release documentation

DeepStream 概况: https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_Overview.html

DeepStream 数据结构:https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_plugin_metadata.html

GStreamer 学习笔记: https://www.cnblogs.com/phinecos/archive/2009/06/07/1498166.html

B站DeepStream 相关视频合集:jetson nano中如何下载deepstream-哔哩哔哩_Bilibili

1、Sample test application 2

 接着看一下deepstream-test2的范例,这是基于test1的基础上去添加“多级检测器”的功能,由于这个功能与DeepStream的追踪功能相捆绑,因此也许一并启动。

  • 编程语言:C/C++

  • 代码量:506行(含注解)

  • 输入源:单个H264/H265视频文件

  • 智能推理:单个的4类别(car, person, bicycle, roadsign)主检测器,加上3个基于“Car”类别的次级检测器,包括颜色、品牌、车型等等,这里还必须打开“追踪器(tracker)”的功能

  • 显示输出:显示器

  • 插件流:filesrc -> h264parse -> nvv4l2decoder -> nvstreammux -> nvinfer (primary detector) -> nvtracker -> nvinfer(secondary classifier) -> nvvideoconvert -> nvdsosd -> nvegltransform -> nveglglessink

1.1 进入目录,找到代码:

cd /opt/nvidia/deepstream/deepstream-6.0/sources/apps/sample_apps
cd deepstream-test2

1.2 按照指导编译文件

从 README文件种可以看到编译步骤:

Compilation Steps:
​
  $ Set CUDA_VER in the MakeFile as per platform.
      For Jetson, CUDA_VER=10.2
      For x86, CUDA_VER=11.4
  $ sudo make

确认自己系统CUDA_VER,我自己就是CUDA_VER=10.2

 打开MakeFile文件修改

 保存退出后编译:

sudo make
nvidia@ubuntu:/opt/nvidia/deepstream/deepstream-6.0/sources/apps/sample_apps/deepstream-test2$ sudo make
cc -c -o deepstream_test2_app.o -DPLATFORM_TEGRA -I../../../includes -I /usr/local/cuda-10.2/include -pthread -I/usr/include/gstreamer-1.0 -I/usr/include/glib-2.0 -I/usr/lib/aarch64-linux-gnu/glib-2.0/include deepstream_test2_app.c
cc -o deepstream-test2-app deepstream_test2_app.o -lgstreamer-1.0 -lgobject-2.0 -lglib-2.0 -L/usr/local/cuda-10.2/lib64/ -lcudart -L/opt/nvidia/deepstream/deepstream-6.0/lib/ -lnvdsgst_meta -lnvds_meta -Wl,-rpath,/opt/nvidia/deepstream/deepstream-6.0/lib/

编译完成。

1.3 运行测试

README文件 有如何运行的说明

To run:
​
  $ ./deepstream-test2-app <h264_elementary_stream>
​
NOTE: To compile the sources, run make with "sudo" or root permission.

官方自带的样本种有H264视频:

cd /opt/nvidia/deepstream/deepstream-6.0/samples/streams

 我自己也在上一篇种转了一些264的文件:

 先用官方的示例视频测试,其所在目录:

cd /opt/nvidia/deepstream/deepstream-6.0/samples/streams

回到测试目录:

cd /opt/nvidia/deepstream/deepstream-6.0/sources/apps/sample_apps/deepstream-test2

执行测试命令:在NoMachine终端执行

./deepstream-test2-app /opt/nvidia/deepstream/deepstream-6.0/samples/streams/sample_720p.h264

 之后就是你泡杯茶,等着,就好了,等挺长时间,直到出现下列打印:

 我们可以回顾一下test1中的推理结果:

 这里明显看到test2不仅能为每个检测到的物体标上编号,这就是“追踪”的功能,在“car”物体上,还有“颜色”、“品牌”、“车型”等信息。

1.4 报错尝试解决

报错信息:

ERROR: Deserialize engine failed because file path: /opt/nvidia/deepstream/deepstream-6.0/sources/apps/sample_apps/deepstream-test2/../../../../samples/models/Secondary_VehicleTypes/resnet18.caffemodel_b16_gpu0_int8.engine open error
​
ERROR: Deserialize engine failed because file path: /opt/nvidia/deepstream/deepstream-6.0/sources/apps/sample_apps/deepstream-test2/../../../../samples/models/Secondary_CarMake/resnet18.caffemodel_b16_gpu0_int8.engine open error
​
ERROR: Deserialize engine failed because file path: /opt/nvidia/deepstream/deepstream-6.0/sources/apps/sample_apps/deepstream-test2/../../../../samples/models/Secondary_CarColor/resnet18.caffemodel_b16_gpu0_int8.engine open error
​
ERROR: Deserialize engine failed because file path: /opt/nvidia/deepstream/deepstream-6.0/sources/apps/sample_apps/deepstream-test2/../../../../samples/models/Primary_Detector/resnet10.caffemodel_b1_gpu0_int8.engine open error
​

所以,报错是打开文件失败,找这几文件

/opt/nvidia/deepstream/deepstream-6.0/samples/models/Secondary_VehicleTypes/resnet18.caffemodel_b16_gpu0_int8.engin
/opt/nvidia/deepstream/deepstream-6.0/ssamples/models/Secondary_CarMake/resnet18.caffemodel_b16_gpu0_int8.engine
/opt/nvidia/deepstream/deepstream-6.0/ssamples/models/Secondary_CarColor/resnet18.caffemodel_b16_gpu0_int8.engine
/opt/nvidia/deepstream/deepstream-6.0/ssamples/models/Secondary_CarColor/resnet18.caffemodel_b16_gpu0_int8.engine
/opt/nvidia/deepstream/deepstream-6.0/samples/models/Primary_Detector/resnet10.caffemodel_b1_gpu0_int8.engine

进入一个文件夹看看

#进入
cd /opt/nvidia/deepstream/deepstream-6.0/samples/models/Secondary_VehicleTypes/
#
ll

发现根本没有我们需要的:“resnet18.caffemodel_b16_gpu0_int8.engin”这个文件,取而代之的是:“resnet18.caffemodel_b16_gpu0_fp16.engine”,这个时候发现是文件名不对,所以我果断的使用了新的文件名称:

#进入测试目录
cd /opt/nvidia/deepstream/deepstream-6.0/sources/apps/sample_apps/deepstream-test2
#依次打开配置文件
sudo vim dstest2_sgie2_config.txt
sudo vim dstest2_sgie1_config.txt
sudo vim dstest2_sgie3_config.txt
sudo vim dstest2_pgie_config.txt
#核对所有需要的engin文件位置和名称和实际是否对应

dstest2_pgie_config.txt 修改后

 dstest2_sgie1_config.txt修改后

 dstest2_sgie2_config.txt 修改后

 dstest2_sgie3_config.txt修改后

 改完之后我们再测试一下:执行测试命令:在NoMachine终端执行

./deepstream-test2-app /opt/nvidia/deepstream/deepstream-6.0/samples/streams/sample_720p.h264

 无报错,而且可以感觉到加载很快,也就是之前我们的测试应该是一样的问题,这个报错导致加载很慢。

 终于找到了这个问题的原因,并且解决了!可以安心睡觉了。

1.5 尝试输入不同的场景视频

上面的测试,我们都输入的事官方提供的视频,我自己转码了一些H.264存储的流文件,进行额外的一些测试看看:

 测试视频1:

#进入测试目录
cd /opt/nvidia/deepstream/deepstream-6.0/sources/apps/sample_apps/deepstream-test2
#测试视频1:/home/nvidia/lsrobot_worksapce/Deepstream/mysamples_streams/H264-Streat-1.h264
./deepstream-test2-app /home/nvidia/lsrobot_worksapce/Deepstream/mysamples_streams/H264-Streat-1.h264

 测试视频2:

#进入测试目录
cd /opt/nvidia/deepstream/deepstream-6.0/sources/apps/sample_apps/deepstream-test2
#测试视频2:/home/nvidia/lsrobot_worksapce/Deepstream/mysamples_streams/H264-Streat-2.h264
./deepstream-test2-app /home/nvidia/lsrobot_worksapce/Deepstream/mysamples_streams/H264-Streat-2.h264

以上就是我今天要分享的内容。纠错,疑问,交流: 911946883@qq.com 


http://www.kler.cn/a/5610.html

相关文章:

  • [源码解析] 模型并行分布式训练Megatron (2) --- 整体架构
  • React Native 集成原生Android功能
  • Unity 6 中的新增功能
  • ubuntu 网络管理
  • 计算机网络——练习题
  • pyinstaller打包资源文件和ini配置文件怎么放
  • IP协议以及相关技术
  • 【致敬嵌入式攻城狮第2期活动预热征文】 [深入理解SSD 20] 话说固态硬盘里的HMB
  • spark通过connector的方式读写starrocks
  • Java连接SqlServer错误
  • 每日学术速递3.27
  • 学习node之——MySQL的安装和基本使用
  • 重构类关系-Extract Interface提炼接口八
  • 【华为】组播IGMP基本原理(5月份将再次更新,这是以前的笔记 还存在些许问题)
  • 异想天开!没有CPU的操作系统
  • c#第二次作业
  • 【Linux内存管理概述】
  • uni-app--》uni-app的生命周期讲解
  • 反向传播自动求微分【Pytorch】
  • 第06章_索引的数据结构
  • 2010年9月计算机二级JAVA笔试试题及答案
  • c语言实践——通讯录(1)(静态版)
  • 机器学习笔记:层次聚类
  • Leetcode.1641 统计字典序元音字符串的数目
  • 《雪国》像憧憬未曾见过的爱恋,美则美矣
  • TCP和UDP网络编程