[C++]类与对象上篇
目录
类与对象上篇::
1.面向过程和面向对象的初步认识
2.类的引入
3.类的定义
4.类的访问限定符及其封装
5.类的作用域
6.类的实例化
7.类的对象的大小的计算
8.类成员函数的this指针
类与对象上篇::
1.面向过程和面向对象的初步认识
C语言是面向过程的,关注的是过程,分析出求解问题的步骤,通过函数调用逐步解决问题。
C++是基于面向对象的,关注的是对象,将一件事情拆分成不同的对象,靠对象之间的交互完成。
2.类的引入
C语言结构体中只能定义变量,在C++中,结构体内不仅可以定义变量,也可以定义函数,比如用C语言方式实现的栈,结构体中只能定义变量,现在以C++方式实现,会发现struct中也可以定义函数。
typedef int DataType;
struct Stack
{
void Init(size_t capacity)
{
_array = (DataType*)malloc(sizeof(DataType) * capacity);
if (nullptr == _array)
{
perror("malloc申请空间失败");
return;
}
_capacity = capacity;
_size = 0;
}
void Push(const DataType& data)
{
// 扩容
_array[_size] = data;
++_size;
}
DataType Top()
{
return _array[_size - 1];
}
void Destroy()
{
if (_array)
{
free(_array);
_array = nullptr;
_capacity = 0;
_size = 0;
}
}
DataType* _array;
size_t _capacity;
size_t _size;
};
int main()
{
Stack s;
s.Init(10);
s.Push(1);
s.Push(2);
s.Push(3);
cout << s.Top() << endl;
s.Destroy();
return 0;
}
上面结构体的定义,在C++中更喜欢用class来代替。
3.类的定义
class className
{
// 类体:由成员函数和成员变量组成
}; // 一定要注意后面的分号
class为定义类的关键字,className为类的名字,{}中为类的主体,注意类定义结束时后面分号不能省略。
类体中内容称为类的成员:类中的变量称为类的属性或成员变量,类中的函数称为类的方法或者成员函数。
类的两种定义方式:
1.声明和定义全部放在类体中,需注意:成员函数如果在类中定义,编译器可能会将其当成内联函数处理。
2.类声明放在.h文件中,成员函数定义放在.cpp文件中,注意成员函数名需要加类名::
一般情况下,更期望采用第二种方式。声明和定义分离的原因:方便别人阅读你的代码,其次导入静态库时,避免源码泄露。声明和定义分离时,定义要体现类域(void Stack::Init(int N = 4))这样类里面的成员由于指定了是哪个类,也可以随意使用。
成员函数命名规则的建议:
class Date
{
public:
void Init(int year)
{
_year = year;
}
private:
int _year;
};
// 或者这样
class Date
{
public:
void Init(int year)
{
mYear = year;
}
private:
int mYear;
};
// 其他方式也可以的,主要看公司要求。一般都是加个前缀或者后缀标识区分就行
4.类的访问限定符及其封装
访问限定符:
C++实现封装的方式:用类将对象的属性与方法结合在一块,让对象更加完善,通过访问权限选择性的将其接口提供给外部的用户使用。
访问限定符说明:
1.public修饰的成员在类外可以直接被访问。
2.protected和private修饰的成员在类外不能直接被访问。
3.访问权限作用域从该访问限定符出现的位置开始直到下一个访问限定符出现时为止。
4.如果后面没有访问限定符,作用域就到 } 即类结束。
5.class的默认访问权限为private,struct为public(因为struct要兼容C)
注意:1.访问限定符只在编译时有用,当数据映射到内存后,没有任何访问限定符的区别。
2.访问限定符是限制在类的外面访问,不限制在类的里面访问。
3.C++不要求变量或函数在上面定义,是因为编译器将类当作一个整体。
面试题:
问题:C++中struct和class的区别是什么?
解答:C++需要兼容C语言,所以C++中struct可以当成结构体使用。另外C++中struct还可以用来定义类。和class定义类是一样的,区别是struct定义的类默认访问权限是public,class定义的类默认访问权限是private。注意:在继承和模板参数列表位置,struct和class也有区别。
封装
面试题:
面向对象的三大特性:封装、继承、多态。
在类和对象阶段,主要研究类的封装特性:
封装:将数据和操作数据的方法进行有机结合,隐藏对象的属性和实现细节,仅对外公开接口来和对象进行交互。
封装本质上是一种管理,让用户更方便使用类。比如:对于电脑这样一个复杂的设备,提供给用户的只有开关机键,通过键盘输入,显示器,USB插孔等,让用户和计算机进行交互,完成日常事务等,但实际上电脑真正工作的却是CPU、显卡、内存等一些硬件元件。
对于计算机使用者而言,不用关心内部核心元件,比如主板上线路是如何布局的,CPU内部是如何设计的等,用户只需要知道,怎么关机,怎么通过键盘和鼠标与计算机进行交互即可。因此计算机厂商在出厂时,在外部套上壳子,将内部实现细节隐藏起来,仅仅对外提供开关机、鼠标、及键盘插孔等,让用户可以与计算机进行交互即可。
在C++语言中实现封装,可以通过类将数据以及操作数据的方法进行有机结合,通过访问权限来隐藏对象内部实现细节,控制方法可以在类外部直接被使用。
5.类的作用域
类定义了一个新的作用域,类的所有成员都在类的作用域中。在类体外定义成员时,需要使用 ::作用域操作符指明成员属于哪个类域。
class Person
{
public:
void PrintPersonInfo();
private:
char _name[20];
char _gender[3];
int _age;
};
// 这里需要指定PrintPersonInfo是属于Person这个类域
void Person::PrintPersonInfo()
{
cout << _name << " "<< _gender << " " << _age << endl;
}
注意:类和结构体一样,里面定义的是类型,只是声明,定义对象的时候才能访问(st.a),因此::不能用来访问类中的成员(Stack::a),但不能用来访问类中的成员函数是因为没有对象的地址传递给this指针(Stack::Print)。
6.类的实例化
用类创建对象的过程称为类的实例化
1.类是对对象进行描述的,是一个模型一样的东西,限定了类有哪些成员,但定义出一个类并没有分配实际的内存空间来存储它,
2.一个类可以实例化出多个对象,实例化出的对象占用实际的物理空间,存储类成员变量。Person类是没有空间的,只有Person类实例化出的对象才有具体的空间。
int main()
{
Person._age = 100; // 编译失败:error C2059: 语法错误:“.”
return 0;
}
7.类的对象的大小的计算
如何计算类对象的大小:
class A
{
public:
void PrintA()
{
cout<<_a<<endl;
}
private:
char _a;
};
问题:类中既可以有成员变量,又可以有成员函数,那么一个类的对象中包含了什么?如何计算一个类的大小?
类对象存储方式的猜测:
1.对象存储中包含类的各个成员:
3.只保存成员变量,成员函数存放在公共的代码段
结论:1.实际中,对于上述三种存储方式,计算机是按照第三种存储方式存储的。
2.一个类的大小实际上就是该类中成员变量之和,当然要注意内存对齐。
3.空类的大小为1byte:占位,不存储有效数据,表示对象存在。
// 类中既有成员变量,又有成员函数
class A1 {
public:
void f1()
{}
private:
int _a;
};
// 类中仅有成员函数
class A2 {
public:
void f2()
{}
};
// 类中什么都没有---空类
class A3
{};
面试题
1.结构体怎么对齐?为什么要进行内存对齐?
2.如何让结构体按照指定的对齐参数进行对齐?能否按照3,4,5即任意字节数对齐?
3.什么是大小端?如何测试某台机器是大端还是小端,有没有遇到过要考虑大小端的场景?
结构体内存对齐规则:
8.类成员函数的this指针
this指针的引出:
class Date
{
public:
void Init(int year, int month, int day)
{
_year = year;
_month = month;
_day = day;
}
void Print()
{
cout <<_year<< "-" <<_month << "-"<< _day <<endl;
}
private:
int _year; // 年
int _month; // 月
int _day; // 日
};
int main()
{
Date d1, d2;
d1.Init(2022,1,11);
d2.Init(2022, 1, 12);
d1.Print();
d2.Print();
return 0;
}
对于上述类,有这样的一个问题:
Date类中有 Init 与 Print 这两个成员函数,函数体中没有关于不同对象的区分,那当di调用 Init 函数时,该函数是如何知道应该设置di对象,而不是设置d2对象呢?
C++中通过引入this指针解决该问题,即:C++编译器给每个“非静态的成员函数”增加了一个隐藏的指针参数,让该指针指向当前对象(函数运行时调用该函数的对象),在函数体中所有"成员变量"的操作,都是通过该指针去访问,只不过所有的操作对用户是透明的,即用户不需要来传递,编译器自动完成。
注意:this指针的定义和传递都是编译器的工作,我们不能去干涉但是我们可以在类里面使用this指针。
面试题:
1.this指针存在哪里?
this指针作为形参,一般是存在栈帧中。(VS下面进行了优化,使用ecx寄存器传递)
2.this指针可以为空吗?
this指针不可以为空,解引用会报错。
// 1.下面程序编译运行结果是? A、编译报错 B、运行崩溃 C、正常运行
class A
{
public:
void Print()
{
cout << "Print()" << endl;
}
private:
int _a;
};
int main()
{
A* p = nullptr;
p->Print();
return 0;
}
答案:C
//不发生过解引用,因为成员函数的地址不在对象中,在公共代码区域 Print(p) -> void Print(A* const this),传递一个指针不会报错
// 1.下面程序编译运行结果是? A、编译报错 B、运行崩溃 C、正常运行
class A
{
public:
void PrintA()
{
cout<<_a<<endl;
}
private:
int _a;
};
int main()
{
A* p = nullptr;
p->PrintA();
return 0;
}
答案:B
//cout<<this->_a 空指针解引用 程序运行崩溃 成员变量在对象里面,要通过this指针去访问
C语言和C++实现Stack的对比:
1.C语言实现:
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
typedef int DataType;
typedef struct Stack
{
DataType* array;
int capacity;
int size;
}Stack;
void StackInit(Stack* ps)
{
assert(ps);
ps->array = (DataType*)malloc(sizeof(DataType) * 3);
if (NULL == ps->array)
{
assert(0);
return;
}
ps->capacity = 3;
ps->size = 0;
}
void StackDestroy(Stack* ps)
{
assert(ps);
if (ps->array)
{
free(ps->array);
ps->array = NULL;
ps->capacity = 0;
ps->size = 0;
}
}
void CheckCapacity(Stack* ps)
{
if (ps->size == ps->capacity)
{
int newcapacity = ps->capacity * 2;
DataType* temp = (DataType*)realloc(ps->array,
newcapacity * sizeof(DataType));
if (temp == NULL)
{
perror("realloc申请空间失败!!!");
return;
}
ps->array = temp;
ps->capacity = newcapacity;
}
}
void StackPush(Stack* ps, DataType data)
{
assert(ps);
CheckCapacity(ps);
ps->array[ps->size] = data;
ps->size++;
}
int StackEmpty(Stack* ps)
{
assert(ps);
return 0 == ps->size;
}
void StackPop(Stack* ps)
{
if (StackEmpty(ps))
return;
ps->size--;
}
DataType StackTop(Stack* ps)
{
assert(!StackEmpty(ps));
return ps->array[ps->size - 1];
}
int StackSize(Stack* ps)
{
assert(ps);
return ps->size;
}
可以看到,在用C语言实现时,Stack相关操作函数有以下共性:
1.每个函数的第一个参数都是Stack*
2.函数中必须是对第一个参数检测因为该参数可能会为NULL
3.函数中都是通过Stack*参数操作栈的
4.调用时必须传递Stack结构体变量的地址
注意:结构体中只能定义存放数据的结构,操作数据的方法不能放在结构体中,即数据和操作数据的方法是分离开的,而且实现上相当复杂一点,涉及到大量指针操作,稍不注意可能就会出错。
2.C++实现
typedef int DataType;
class Stack
{
public:
void Init()
{
_array = (DataType*)malloc(sizeof(DataType) * 3);
if (NULL == _array)
{
perror("malloc申请空间失败!!!");
return;
}
_capacity = 3;
_size = 0;
}
void Push(DataType data)
{
CheckCapacity();
_array[_size] = data;
_size++;
}
void Pop()
{
if (Empty())
return;
_size--;
}
DataType Top() { return _array[_size - 1]; }
int Empty() { return 0 == _size; }
int Size() { return _size; }
void Destroy()
{
if (_array)
{
free(_array);
_array = NULL;
_capacity = 0;
_size = 0;
}
}
private:
void CheckCapacity()
{
if (_size == _capacity)
{
int newcapacity = _capacity * 2;
DataType* temp = (DataType*)realloc(_array, newcapacity *
sizeof(DataType));
if (temp == NULL)
{
perror("realloc申请空间失败!!!");
return;
}
_array = temp;
_capacity = newcapacity;
}
}
private:
DataType* _array;
int _capacity;
int _size;
};
int main()
{
Stack s;
s.Init();
s.Push(1);
s.Push(2);
s.Push(3);
s.Push(4);
printf("%d\n", s.Top());
printf("%d\n", s.Size());
s.Pop();
s.Pop();
printf("%d\n", s.Top());
printf("%d\n", s.Size());
s.Destroy();
return 0;
}
C++中通过类可以将数据以及操作数据的方法进行完美结合,通过访问权限可以控制哪些方法可以在类外被调用,即封装,在使用时就像使用自己的成员一样,更符合人类对一件事物的认知,而且每个方法不需要传递Stack*的参数了,编译器编译之后参数会自动还原,即C++中Stack*参数是由编译器维护的,C语言是需要用户自己维护的。